Lipocalin-2: Response to a short-term treadmill protocol in obese and normal-weight men
Abstract
Background: Lipocalin-2 (Lcn2) a newer adipocyte-secreted acute phase protein was recently reported to be correlated with potential effects in obesity and inflammation. The reactions of this protein in progressive exercise have not yet been evaluated. Purpose: This study was designed to compare of plasma Lcn2 and high-sensitivity C-reactive protein (hs-CRP) levels after participating in a short-term treadmill protocol (STP) in obese and normal-weight men. Materials and methodology: In a STP, 9 obese (aged: 43.13±4.6 yrs and BMI: 31.36±1.6 kg/m2) and 9 normal-weight (aged: 42.88±4.4 yrs and BMI: 23.03±1.7 kg/m2; mean ± SD) sedentary men that have been selected randomly through volunteers, performed a stepwise maximal aerobic endurance with a treadmill Bruce protocol. Results: In prior to STP, Lcn2 level was higher in obese than normal-weight individuals. A significant increasing in Lcn2, hs-CRP, and white blood cells (WBC) levels were observed after STP in both of obese and normal-weight groups. Also, levels of Lcn2, hs-CRP and WBC were elevated in obese than normal-weight subjects after STP. Conclusion: It seems Lcn2 and other plasma inflammatory signs were elevated in obese and normal-weight men after participating in one exhaustive short-term exercise. These changes were considerable in obese men.
Keywords
References
Berggren, J.R., Hulver, M.W., Houmard, J.A. Fat as an endocrine organ: influence of exercise. J Appl Physiol. 2005; 99:757-764. https://doi.org/10.1152/japplphysiol.00134.2005
Borg, G.A.V. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982; 14:377-381. https://doi.org/10.1249/00005768-198205000-00012
Bruce, R.A., Kusumi, F., Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973; 85:546-562. https://doi.org/10.1016/0002-8703(73)90502-4
Bruunsgaard, H. The clinical impact of systemic low-level inflammation in elderly populations. Dan Med Bull. 2006; 53:285-309.
Cancello, R., Henegar, C., Viguerie, N., Taleb, S., Poitou, C., Rouault, C., Coupaye, M., Pelloux, V., Hugol, D., Bouillot, J.L., Bouloumié, A., Barbatelli, G., Cinti, S., Svensson, P.A., Barsh, G.S., Zucker, J.D., Basdevant, A., Langin, D., Clement, K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005; 54:2277-2286. https://doi.org/10.2337/diabetes.54.8.2277
Choi, K.M., Kim, T.N., Yoo, H.J., Lee, K.W., Cho, G.J., Hwang, T.G., Baik, S.H., Choi, D.S., Kim, S.M. Effect of exercise training on A-FABP, lipocalin-2 and RBP4 levels in obese women. Clin Endocrin. 2009; 70:569-574. https://doi.org/10.1111/j.1365-2265.2008.03374.x
Choi, K.M., Lee, J.S., Kim, E.J., Baik, S.H., Seo, H.S., Choi, D.S., Oh, D.J., Park, C.G. Implication of lipocalin-2 and visfatin levels in patients with coronary heart disease. Eur J Endocrinol. 2008; 158:203-207. https://doi.org/10.1530/EJE-07-0633
Ciolac, E.G., Guimaraes, G.V. Physical exercise and metabolic syndrome. Rev Bras Med Esporte. 2004; 10:325-330. https://doi.org/10.1900/RDS.2006.3.118
Cowland, J.B., Muta, T., Borregaard, N. IL-1β-specific upregulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol. 2006; 176:5559-66. https://doi.org/10.4049/jimmunol.176.9.5559
Damirchi, A., Babaei, P., Arazi, H. Acute phase response of immune system to single and repeated bouts of selected exercise in a day. Thesis for the degree of doctor of sport physiology. 2008.
Esteve, E., Ricart, W., Fernández-Real, J.M. Adipocytokines and insulin resistance: the possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care. 2009; 32(2):S362-S367. https://doi.org/10.2337/dc09-S340
Flo, T.H., Smith, K.D., Sato, S., Rodriguez, D.J., Holmes, M.A., Strong, R.K., Akira, S., Aderem, A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004; 432:917-921. https://doi.org/10.1038/nature03104
Mathur, N., Pedersen, B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008; 1-6. https://doi.org/10.1155/2008/109502
Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28:412-419. https://doi.org/10.1007/BF00280883
Mohebbi, H., Moghadasi, M., Rahmani-Nia, F., Hassan-Nia, S., Noroozi, H. Association among lifestyle status, plasma adiponectin level and metabolic syndrome in obese middle aged men. Br J Biomotricity. 2009; 3:243-252.
Nieman, D.C. Fitness and sports medicine: An introduction. Bull Publishing Company; 1990. Pp. 70-76.
Paczeck, B.C., Bartlomiejczyk, I., Gabrys, T., Przybylski, J., Nowak, M., Paczeck, L. Lack of relationship between interleukin-6 and CRP levels in healthy male athletes. Immonol Let. 2005; 99:136-140. https://doi.org/10.1016/j.imlet.2005.02.006
Pedersen, B.K., Steensberg, A., Fischer, C., Keller, C., Ostrowski, K., Schjerling, P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev. 2001; 7:18-31.
Petersen, A.M.W., Pedersen, B.K. The anti-inflammatory effect of exercise. J Appl Physiol. 2005; 98:1154-1162. https://doi.org/10.1152/japplphysiol.00164.2004
Ross, R. Atherosclerosis, an inflammatory disease. N Engl J Med. 1999; 340:115-126. https://doi.org/10.1056/NEJM199901143400207
Sommer, G., Weise, S., Kralisch, S., Lossner, U., Bluher, M., Stumvoll, M., Fasshauer, M. Lipocalin-2 is induced by interleukin-1 β in murine adipocytes in vitro. J Cell Biochemistry. 2009; 106:103-108. https://doi.org/10.1002/jcb.21980
Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., Sugawara, K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev. 2002; 8:6-48.
Suzuki, K., Yamada, M., Kurakake, S., Okamura, N., Yamaya, K., Liu, Q., Kudoh, S., Kowatari, K., Nakaji, S., Sugawara, K. Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol. 2000; 81:281-287. https://doi.org/10.1007/s004210050044
Tan, B., Adya, R., Iaoye, X., Syed, F., Lewandowski, K.C., O'hare, J.P., Randeva, H. Ex vivo and in vivo regulation of Lipocalin-2, a novel adipokine, by Insulin. Diabetes Care. 2009; 32:129-131. https://doi.org/10.2337/dc08-1236
Tataranni, P.A., Ortega, E. A burning question: does an adipokineinduced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes. 2005; 54:917-927. https://doi.org/10.2337/diabetes.54.4.917
Vandam, R.M., Hu, F.B. Lipocalins and insulin resistance: etiological role of retinol-binding protein 4 and lipocalin-2? Clin Chem. 2007; 53(1):5-7. https://doi.org/10.1373/clinchem.2006.080432
Wang, Y., Lam, K.S.L., Kraegen, E.W., Sweeney, G., Zhang, J., Tso, A.W.K., Chow, W.S., Wat, N.M.S., Xu, J.Y., Hoo, R.L.C., Xu, A. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem. 2007; 53(1):34-41. https://doi.org/10.1373/clinchem.2006.075614
Yan, Q.W., Yang, Q., Mody, N., Graham, T.E., Hsu, C.H., Xu, Z., Houstis, N.E., Kahn, B.B., Rosen, E.D. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes. 2007; 6(10):2533-2540. https://doi.org/10.2337/db07-0007
Zhang, J., Wu, Y., Zhang, Y., Leroith, D., Bernlohr, D.A., Chen, X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Molec Endocrin. 2008; 22(6):1416-1426. https://doi.org/10.1210/me.2007-0420
DOI: https://doi.org/10.4100/jhse.2011.61.07
Copyright (c) 2011 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.