Application of altitude/hypoxic training by elite athletes

Authors

  • Randall L. Wilber United States Olympic Committee, United States

DOI:

https://doi.org/10.4100/jhse.2011.62.07

Keywords:

Hypobaric hypoxia, Intermittent hypoxic training, Live high-train low, Nitrogen dilution, Normobaric hypoxia, Supplemental oxygen

Abstract

At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as utilized by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high + train high (LH + TH), 2) live high + train low (LH + TL), and 3) live low + train high (LL + TH). The LH + TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and normobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH + TL is the altitude/hypoxic training strategy of LL + TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

Downloads

Download data is not yet available.

References

Abellan, R., Remacha, A.F., Ventura, R., Sarda, M.P., Segura, J., Rodriguez, F.A. Hematologic response to four weeks of intermittent hypobaric hypoxia in highly trained athletes. Haematologica. 2005; 90:126-127.

Ashenden, M.J., Gore, C.J., Dobson, G.P., Hahn, A.G. "Live high, train low" does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol. 1999a; 80:479-484. https://doi.org/10.1007/s004210050621

Ashenden, M.J., Gore, C.J., Martin, D.T., Dobson, G.P., Hahn, A.G. Effects of a 12-day "live high, train low" camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur. J. Appl. Physiol. 1999b; 80:472-478. https://doi.org/10.1007/s004210050620

Ashenden, M.J., Gore, C.J., Dobson, G.P., Et Al. Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol. 2000; 81:428-435. https://doi.org/10.1007/s004210050064

Aughey, R.J., Gore, C.J., Hahn, A.G., Et Al. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes. J Appl Physiol. 2005; 98:186-192. https://doi.org/10.1152/japplphysiol.01335.2003

Aughey, R.J., Clark, S.A., Gore, C.J., Et Al. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+-K+-ATPase activity in well-trained athletes. Eur J Appl Physiol. 2006; 98:299-309. https://doi.org/10.1007/s00421-006-0280-z

Bailey, D.M., Davies, B. Physiological implications of altitude training for endurance performance at sea level: A review. Br J Sports Med. 1997; 31:183-190. https://doi.org/10.1136/bjsm.31.3.183

Beidleman, B.A., Muza, S.R., Rock, P.B., Et Al. Exercise responses after altitude acclimatization are retained during reintroduction to altitude. Med Sci Sports Exerc. 1997; 29:1588-1595. https://doi.org/10.1097/00005768-199712000-00007

Bonetti, D.L., Hopkins, W.G., Kilding, A.E. High-intensity kayak performance after adaptation to intermittent hypoxia. Int J Sports Physiol. Perform. 2006; 1:246-260. https://doi.org/10.1123/ijspp.1.3.246

Brugniaux, J.V., Schmitt, L., Robach, P., Et Al. Eighteen days of "living high, training low" stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol 2006; 100:203-211. https://doi.org/10.1152/japplphysiol.00808.2005

Brugniaux, J.V., Schmitt, L., Robach, P., Et Al. Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol. 2006; 96:66-77. https://doi.org/10.1007/s00421-005-0065-9

Buskirk, E.R., Kollias, J., Akers, R.F., Prokop, E.K., Reategui, E.P. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967; 23:259-266.

Chick, T.W., Stark, D.M., Murata, G.H. Hyperoxic training increases work capacity after maximal training at moderate altitude. Chest. 1993; 104:1759-1762. https://doi.org/10.1378/chest.104.6.1759

Clark, S.A., Aughey, R.J., Gore, C.J., Et Al. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. J Appl Physiol. 2004; 96:517-525. https://doi.org/10.1152/japplphysiol.00799.2003

Desplanches, D., Hoppeler, H. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993; 425:263-267. https://doi.org/10.1007/BF00374176

Fulco, C.S., Rock, P.D., Cymerman, A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998; 69:793-801.

Fulco, C.S., Rock, P.D., Cymerman, A. Improving athletic performance: Is altitude residence or altitude training helpful? Aviat Space Environ Med. 2000; 71:162-171.

Glyde-Julian, C.G., Gore, C.J., Wilber, R.L., Et Al. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol. 2004; 96:1800-1807. https://doi.org/10.1152/japplphysiol.00969.2003

Gore, C.J., Hahn, A.G., Aughey, R.J., Et Al. Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001; 173:275-286. https://doi.org/10.1046/j.1365-201X.2001.00906.x

Gore, C.J., Rodriguez, F.A., Truijens, M.J., Townsend, N.E., Stray-Gundersen, J., Levine, B.D. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). J Appl Physiol. 2006; 101:1386-1393. https://doi.org/10.1152/japplphysiol.00342.2006

Hahn, A.G., Telford, R.D., Tumilty, D.M., Et Al. Effect of supplemental hypoxic training on physiological characteristics and ergometer performance in elite rowers. Excel. 1992; 8:127-138.

Hamlin, M.J., Hellemans, J. Effects of intermittent normobaric hypoxia on blood parameters in multi-sport endurance athletes. Med Sci Sports Exerc. 2004; 36(5):S337. https://doi.org/10.1249/00005768-200405001-01616

Hendriksen, I.J.M., Meeuwsen, T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: A cross-over study in humans. Eur J Appl Physiol. 2003; 88:396-403. https://doi.org/10.1007/s00421-002-0708-z

Hinckson, E.A., Hopkins, W.G. Changes in running endurance performance following intermittent altitude exposure simulated with tents. Eur J Sport Sci. 2005; 5:15-24. https://doi.org/10.1080/17461390500077301

Hinckson, E.A., Hopkins, W.G., Fleming, J.S., Edwards, T., Pfitzinger, P., Hellemans, J. Sea-level performance in runners using altitude tents: A field study. J Sci Med Sport. 2005; 8:451-457. https://doi.org/10.1016/S1440-2440(05)80061-1

Karlsen, T., Madsen, O., Rolf, S., Stray-Gundersen, J. Effects of 3 weeks hypoxic interval training on sea level cycling performance and hematological parameters. Med Sci Sports Exerc. 2002; 34(5):S224. https://doi.org/10.1097/00005768-200205001-01250

Katayama, K., Matsuo, H., Ishida, K., Mori, S., Miyamura, M. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt Med Biol. 2003; 4:291-304. https://doi.org/10.1089/152702903769192250

Katayama, K., Sato, K., Matsuo, H., Ishida, K., Iwasaki, K., Miyamura, M. Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol. 2004; 92:75-83. https://doi.org/10.1007/s00421-004-1054-0

Katayama, K., Sato, Y., Morotome, Y, Et Al. Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining. J. Appl Physiol. 1999; 86:1805-1811.

Kinsman, T.A., Gore, C.J., Hahn, A.G., Et Al. Sleep in athletes undertaking protocols of exposure to nocturnal simulated altitude at 2650 m. J Sci Med Sport. 2005; 8:222-232. https://doi.org/10.1016/S1440-2440(05)80013-1

Kinsman, T.A., Townsend, N.E., Gore, C.J., Et Al. Sleep disturbance at simulated altitude indicated by stratified respiratory disturbance index but not hypoxic ventilatory response. Eur J Appl Physiol. 2005; 94:569-575. https://doi.org/10.1007/s00421-005-1368-6

Knaupp, W., Khilnani, S., Sherwood, J., Scharf, S., Steinberg, H. Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol. 1992; 73:837-840.

Laitinen, H., Alopaeus, K., Heikkinen, R., Et Al. Acclimatization to living in normobaric hypoxia and training at sea level in runners. Med Sci Sports Exerc. 1995; 27(5):S109. https://doi.org/10.1249/00005768-199505001-00617

Levine, B.D. Intermittent hypoxic training: Fact and fancy. High Alt Med Biol. 2002; 3:177-193. https://doi.org/10.1089/15270290260131911

Levine, B.D. Should "artificial" high altitude environments be considered doping? Scand J Med Sci Sports. 2006; 16:297-301. https://doi.org/10.1111/j.1600-0838.2006.00595.x

Levine, B.D., Stray-Gundersen, J. A practical approach to altitude training: Where to live and train for optimal performance enhancement. Int J Sports Med. 1992; 13(1):S209-S212. https://doi.org/10.1055/s-2007-1024642

Levine, B.D., Stray-Gundersen, J. "Living high-training low": Effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997; 83:102-112.

Levine, B.D., Stray-Gundersen, J. Dose-response of altitude training: How much altitude is enough? In: RC Roach, PD Wagner, PH Hackett. Hypoxia and Exercise. New York: Springer; 2006. https://doi.org/10.1007/978-0-387-34817-9_20

Martin, D.T., Hahn, A.G., Lee, H., Roberts, A.D., Victor, J., Gore, C.J. Effects of a 12-day "live high, train low" cycling camp on 4-min and 30-min performance. Med Sci Sports Exerc. 2002; 34(5):S274. https://doi.org/10.1097/00005768-200205001-01538

Mattila, V., Rusko, H. Effect of living high and training low on sea level performance in cyclists. Med Sci Sports Exerc. 1996; 28(5):S157.

Mclean, S.R., Kolb, J.C., Norris, S.R., Smith, D.J. Diurnal normobaric moderate hypoxia raises serum erythropoietin concentration but does not stimulate accelerated erythrocyte production. Eur J Appl Physiol. 2006; 96:651-658. https://doi.org/10.1007/s00421-005-0125-1

Morris, D.M., Kearney, H.T., Burke, E.R. The effects of breathing supplemental oxygen during altitude training on cycling performance. J Sci Med Sport. 2000; 3:165-175. https://doi.org/10.1016/S1440-2440(00)80078-X

Niess, A.M., Fehrenbach, E., Strobel, G., Et Al. Evaluation of stress response to interval training at low and moderate altitudes. Med Sci Sports Exerc. 2003; 35:263-269. https://doi.org/10.1249/01.MSS.0000048834.68889.81

Nummela, A., Rusko, H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J Sports Sci. 2000; 18:411-419. https://doi.org/10.1080/02640410050074340

Pedlar, C., Whyte, G., Emegbo, S., Stanley, N., Hindmarch, I., Godfrey, R. Acute sleep responses in a normobaric hypoxic tent. Med Sci Sports Exerc. 2005; 37:1075-1079.

Piehl-Aulin, K., Svedenhag, J., Wide, L., Berglund, B., Saltin, B. Short-term intermittent normobaric hypoxia - haematological, physiological and mental effects. Scand J Med Sci Sports. 1998; 8:132-137. https://doi.org/10.1111/j.1600-0838.1998.tb00182.x

Powell, F.L., Garcia, N. Physiological effects of intermittent hypoxia. High Alt Med Biol. 2000; 1:125-136. https://doi.org/10.1089/15270290050074279

Richalet, J.P., Bittel, J., Herry, J.P., Et Al. Use of a hypobaric chamber for pre-acclimatization before climbing Mount Everest. Int J Sports Med. 1992; 13(1):S216-S220. https://doi.org/10.1055/s-2007-1024644

Robach, P., Schmitt, L., Brugniaux, J.V., Et Al. Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. Eur J Appl Physiol. 2006; 96:423-433. https://doi.org/10.1007/s00421-005-0089-1

Roberts, A.D., Clark, S.A., Townsend, N.E., Anderson, M.E., Gore, C.J., Hahn, A.G. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high:train low altitude exposure. Eur J Appl Physiol. 2003; 88:390-395. https://doi.org/10.1007/s00421-002-0720-3

Rodriguez, F.A., Truijens, M.J., Townsend, N.E., Et Al. Effects of four weeks of intermittent hypobaric hypoxia on sea level running and swimming performance. Med Sci Sports Exerc. 2004; 36(5):S338.

Roels, B., Millet, G.P., Marcoux, C.J.L., Coste, O., Bentley, D.J., Candau, R.B. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005; 37:138-146. https://doi.org/10.1249/01.MSS.0000150077.30672.88

Rusko, H.K., Leppavuori, A., Makela, P., Leppaluoto, L. Living high, training low: a new approach to altitude training at sea level in athletes. Med Sci Sports Exerc. 1995; 27(5):S6. https://doi.org/10.1249/00005768-199505001-00036

Rusko, H.K., Tikkanen, H., Paavolainen, L., Hamalainen, I., Kalliokoski, K., Puranen, A. Effect of living in hypoxia and training in normoxia on sea level VO2max and red cell mass. Med Sci Sports Exerc. 1999; 31(5):S86. https://doi.org/10.1097/00005768-199905001-00277

Saunders, P.U., Telford, R.D., Pyne, D.B., Et AL. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol. 2004; 96:931-937. https://doi.org/10.1152/japplphysiol.00725.2003

Savourey, G., Garcia, N., Besnard, Y., Hanniquet, A.M., Fine, M.O., Bittel, J. Physiological changes induced by pre-adaptation to high altitude. Eur J Appl Physiol. 1994; 69:221-227. https://doi.org/10.1007/BF01094792

Savourey, G., Garcia, N., Caravel, J.P., Et Al. Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol. 1998; 77:37-43. https://doi.org/10.1007/s004210050297

Schmidt, W. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity. High Alt Med Biol. 2002; 3:167-176. https://doi.org/10.1089/15270290260131902

Schmitt, L., Millet, G., Robach, P., Et Al. Influence of "living high-training low" on aerobic performance and economy of work in elite athletes. Eur J Appl Physiol. 2006; 97:627-636. https://doi.org/10.1007/s00421-006-0228-3

Stray-Gundersen, J., Chapman, R.F., Levine, B.D. "Living high-training low" altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001; 91:1113-1120.

Terrados, N., Melichna, J., Sylven, C., Jansson, E., Kaijser, L. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol. 1988; 57:203-209. https://doi.org/10.1007/BF00640664

Tiollier, E., Schmitt, L., Burnat, P., Et Al. Living high-training low altitude training: Effects on mucosal immunity. Eur J Appl Physiol. 2005; 94:298-304. https://doi.org/10.1007/s00421-005-1317-4

Townsend, N.A., Gore, C.J., Hahn, A.G., Et Al. Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol. 2002; 93:1498-1505. https://doi.org/10.1152/japplphysiol.00381.2002

Truijens, M.J., Toussaint, H.M., Dow, J., Levine, B.D. Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol. 2003; 94:733-743. https://doi.org/10.1152/japplphysiol.00079.2002

Ventura, N., Hoppeler, H., Seiler, R., Binggeli, A., Mullis, P., Vogt, M. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003; 24:166-172. https://doi.org/10.1055/s-2003-39086

Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., Billeter, R., Hoppeler, H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001; 91:173-182.

Wallechinsky, D. The Complete Book of the Winter Olympics (Turin 2006 Edition). Toronto: Sport Media Publishing, Inc.; 2006.

Wehrlin, J.P., Zuest, P., Hallen, J., Marti, B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol. 2006; 100:1938-1945. https://doi.org/10.1152/japplphysiol.01284.2005

Wilber, R.L. Current trends in altitude training. Sports Med. 2001; 31:249-265. https://doi.org/10.2165/00007256-200131040-00002

Wilber, R.L. Performance at sea level following altitude training. In: Altitude Training and Athletic Performance. Champaign: Human Kinetics; 2004.

Wilber, R.L. Current practices and trends in altitude training. In: Altitude Training and Athletic Performance. Champaign: Human Kinetics; 2004.

Wilber, R.L., Holm, P.L., Morris, D.M., Dallam, G.M., Callan, S.D. Effect of FIO2 on physiological responses and cycling performance at moderate altitude. Med Sci Sports Exerc. 2003; 35:1153-1159. https://doi.org/10.1249/01.MSS.0000074495.34243.B5

Wilber, R.L., Holm, P.L., Morris, D.M, Et Al. Effect of FIO2 on oxidative stress during interval training at moderate altitude. Med Sci Sports Exerc. 2004; 36:1888-1894. https://doi.org/10.1249/01.MSS.0000145442.25016.DD

Wilber, R.L., Im, J., Holm, P.L., Et Al. Effect of FIO2 on hemoglobin/myoglobin-deoxygenation during high-intensity exercise at moderate altitude. Med Sci Sports Exerc. 2005; 37(5):S297.

Statistics

Statistics RUA

How to Cite

Wilber, R. L. (2011). Application of altitude/hypoxic training by elite athletes. Journal of Human Sport and Exercise, 6(2), 271–286. https://doi.org/10.4100/jhse.2011.62.07

Issue

Section

Articles