Biological passport parameters


  • Mario Zorzoli International Cycling Union, Switzerland



Biological passport, Blood doping, Indirect markers


For long time anti-doping authorities have tried to find a way to tackle the use of forbidden substances and methods (namely erythropoiesis stimulating agents and blood transfusion) which improve sport performance through an increase of red cells and therefore oxygen transfer. From the end of the ‘90s scientists have explored two different but complimentary ways to detect these substances/methods: direct detection, aiming to find the forbidden agent in an athlete's biological sample and indirect detection, through the measurement of hematological parameters which are modified by blood doping. The biological passport is the most recent and sophisticated tool in regard to indirect doping detection. Its principles rely on the monitoring of relevant biomarkers on a regular basis so as to constitute an individual and longitudinal profile for any given athlete, with the subject becoming his/her own reference. Standardized procedures in relation to blood sampling, transport and analysis have to be respected in order to decrease pre-analytical and analytical variability. A statistical adaptive model is applied to interpret all the gathered data. The evaluation of this information follows forensic principle, where multiple piece of evidence can be added in order to support the opinion that a doping offence has taken place. Finally, the biological passport experience of the International Cycling Union is presented.


Download data is not yet available.


Audran, M., Gareau, R., Matecki, S., Durand, F., Chenard, C., Sicart, M.T., Marion, B., Bressolle, F. Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sports Exerc. 1999; 31:639.

Berglund, B., Ekblom, B. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Intern Med. 1991; 229:125-30.

Berglund, B., Ekbolm, B., Ekblom, E., Berglund, L., Kallner, A., Reinebo, P., Lindeberg, S. The Swedish Blood Pass project. Scand J Med Sci Sports. 2007; 17(3):292-7.

Gore, C.J., Parisotto, R., Ashenden, M.J., Stray-Gundersen, J., Sharpe, K., Hopkins, W., Emslie, K.R., Howe, C., Trout, J., Kazlauskas, R., Hahn, A.G. Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica. 2003; 88:333-44.

Holt, R.I. Detecting growth hormone abuse in athletes. Anal Bioanal Chem. 2011.

Jelkmann, W., Lundby, C. Blood doping and its detection. Blood. 2011; June 7.

Lamon, S., Giraud, S., Egli, L., Smolander, J., Jarsch, M., Stubenrauch, M.G., Hellwig, A., Saugy, M., Robinson, N. A high-throughput test to detect C.E.R.A. doping in blood. J Pharm Biomed Anal. 2009; 50(5):954-8.

Lasne, F., De Ceaurriz, J. Recombinant erythropoietin in urine. Nature. 2000; 405(6787):635.

Lippi, G., Franchini, M., Salvagno, G.L., Guidi, G.C. Biochemistry, physiology, and complications of blood doping: facts and speculation. Crit Rev Clin Lab Sci. 2006; 43(4):349-91.

Malcovati, L., Pascutto, C., Cazzola, M. Hematologic passport for athletes competing in endurance sports: a feasibility study. Haematologica. 2003; 88(5):570-81.

Morkeberg, J., Saltin, B., Belhage, B., Damsgaard, R. Blood profiles in elite cross-country skiers: a 6-year follow-up. Scand J Med Sci Sports. 2009; 19(2):198-205.

Nelson, M., Popp, H., Sharpe, K., Ashenden, M. Proof of homologous blood transfusion through quantification of blood group antigens.Haematologica. 2003; 88(11):1284-95.

Parisotto, R., Gore, C.J., Emslie, K.R., Ashenden, M.J., Brugnara, C., Howe, C., Martin, D.T., Trout, G.J., Hahn, A.G. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica. 2000; 85(6):564-72.

Parisotto, R., Wu, M., Ashenden, M.J., Emslie, K.R., Gore, C.J., Howe, C., Kazlauskas, R., Sharpe, K., Trout, G.J., Xie, M. Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica. 2001; 86(2):128-37.

Sharpe, K., Ashenden, M.J., Schumacher, Y.O. A third generation approach to detect erythropoietin abuse in athletes. Haematologica. 2006; 91(3):356-63.

Sottas, P.E., Robinson, N.E., Giraud, S., Taroni, F., Kamber, M., Mangin, P., Saugy, M. Statistical classification of abnormal blood profiles in athletes. Int J Biostatistics. 2006; 2(1):3.

Sottas, P.E., Robinson, N.E., Saugy, M., Niggli, O. A forensic approach to the interpretation of blood doping markers. Law Probability and Risk. 2008a; 7(3):191-210.

Sottas, P.E., Robinson, N.E., Saugy, M. The athlete's biological passport and indirect markers of blood doping. Handb Exp Pharmacol. 2010a; (195):305-26.

Sottas, P.E., Saudan, C., Schweizer, C., Baume, N., Mangin, P., Saugy, M. From population- to subject-based limits of T/E ratio to detect testosterone abuse in elite sports. Forensic Sci Int. 2008b; 174(2-3):166-72.

Sottas, P.E., Saugy, M., Saudan, C. Endogenous steroid profiling in the athlete biological passport. Endocrinol Metab Clin North Am. 2010b; 39(1):59-73.

Wada. The world anti-doping code. Athlete biological passport operating guidelines and compilation of required elements, V2.1. Available at

Zorzoli, M., Rossi, F. Implementation of the biological passport: the experiencie of the International Cycling Union. Drug Test Anal. 2010; 2(11-12):542-7.

Zorzoli, M. Recent advances in anti-doping settings. In: W Schanzer, H Geyer, A Gotzmann, U Marcck (eds.). Recent Advances in Doping Analysis. Koln: Sport and Buch Strauss; 2005.


Statistics RUA

How to Cite

Zorzoli, M. (2011). Biological passport parameters. Journal of Human Sport and Exercise, 6(2), 205–217.