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ABSTRACT

Laursen PB. Long distance triathlon: demands, preparation and performance. J. Hum. Sport Exerc. Vol. 6,
No. 2, pp. 247-263, 2011. The rise in worldwide popularity of long distance triathlon racing comes with it an
increased interest into how to train and prepare optimally for such an event. This paper examines the
physiologic and bioenergetic demands of long distance triathlon racing, including energy requirements,
muscle damage consequences, thermoregulatory demands and water turnover rates. In response to these
physiological challenges, the second part of the paper describes the training goals and race practices that
may assist to minimize these disturbances, in turn, optimizing performance and health for the long distance
triathlete. Some of these race strategies include appropriate pacing, ensuring adequate fluid and
carbohydrate consumption, acclimating to the heat, and consuming caffeine in appropriate quantities. Key
words: ULTRA-ENDURANCE, IRONMAN, TRIATHLETE, EXERCISE, CARBOHYDRATE, DRINKING
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INTRODUCTION

On February 18, 1978, fifteen competitors began the world’s first Ironman triathlon event off the beach of
Waikiki, in Honolulu, Hawaii. It's unlikely that any of those competing at the time could have foreseen the
international craze that it has become, with now, at the time of writing, consisting of 24 sanctioned Ironman
events throughout the world under the Ironman World Triathlon Corporation trademark, that are considered
qualifiers for the Hawaii Ironman World Championship in Kona on Hawaii’s Big Island. There are another
42 sanctioned 70.3 Ironman Triathlon (half-Ironman) events, which can also be qualifiers for the World
Championship. And of course, there are numerous other Ironman and half-Ironman distance triathlon
events, or similar, around the world. All events tend to have participation levels that range from between
500 to 2500 competitors. Importantly, people are no longer considered odd, as they might have at one time,
for engaging in training for such events. Instead, this hobby is well accepted and considered part of a
healthy lifestyle (Neubauer et al., 2008; Wagner et al., 2010).

The rise in worldwide popularity of long distance triathlon racing comes with it an increased interest into
how to train and prepare optimally for such an event. In order to uncover opportunities to enhance long
distance triathlon performance, this paper takes a practitioners approach to the problem by examining first
the physiological demands of the event, including energy and water requirements, thermoregulatory
demands and resulting muscle damage. Second, the paper will describe the preparation required to create
physiological defense systems for each fatigue-causing factor. Last, the paper will offer strategies for
maximizing race day performance; approaches that include heat acclimation, tapering, carbohydrate
ingesting, caffeine supplementation and using thirst to optimize hydration.

DEMANDS OF LONG DISTANCE TRIATHLON

In the context of this review, a long distance triathlon is considered an ‘ultra-endurance’ triathlon, where
ultra-endurance is defined as moderate to high-intensity (threshold intensity, e2-e3) exercise performed for
durations longer than 4 hours (Kreider, 1991; Hawley & Hopkins, 1995). Such triathlons include the half-
(1.9 km swim, 90 km bike, 21.1 km run) and full distance Ironman (3.8 km swim, 180 km bike, 42.2 km run)
races. Half Ironman event times tend to range from 3.8 to 7 h in duration, and full Ironman events from 8 to
17 hours, depending of course on the fitness level and efficiency rates of the athlete (Laursen & Rhodes,
2001). Performing such long duration work at relatively high intensities (~80% maximum heart rate;
Laursen et al., 2005) requires high energy expenditures, elicits a rise in core temperature and causes
generally large water turnover rates, muscle damage and a high incidence of muscle cramping.

Bioenergics

Estimates of energy expenditure approximate 4500 kcal for half-Ironman triathlons (Gillum et al., 2006) and
8500 to 11,500 kcal for full Ironman races (Laursen & Rhodes, 2001; Kimber et al., 2002). With energy
contribution from the immediate (ATP-CP) and short-term (anaerobic glycolytic) energy systems considered
relatively insignificant, performance in an ultra-endurance triathlon will be dependent on both the rate and
efficiency of oxygen-derived adenosine triphosphate (ATP) repletion. As protein oxidation is relatively small
during exercise, carbohydrate and lipid oxidation rates become a main determinant of race success in an
ultra-endurance triathlon. As outlined by Hawley & Hopkins (1995), the pathways for carbohydrate and lipid
oxidation in muscle mitochondria include the aerobic glycolytic and lipolytic systems, respectively. The
aerobic glycolytic system refers to one’s capacity to use carbohydrate (breakdown of glucose to pyruvate,
to acetyl CoA, through the Krebs cycle and electron transport chain) to derive ATP aerobically, while the
aerobic lypolytic system describes one’s capacity to break down triglycerides to fatty acids (lipolysis), to
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acetyl CoA (B-oxidation), to be also run through the Krebs cycle and electron transport chain to derive ATP
aerobically.

With ultra-endurance exercise, there is a progressively greater use of fat as fuel over the duration of the
event, until it can contribute up to 80% of the total caloric expenditure (Golnick, 1985). Cross-sectional
studies on trained versus untrained athletes show that endurance training increases the ability to oxidise fat
stores from both intramuscular triglycerides and adipocytes (Coggan et al., 2000). Thus, intelligent and
demanding training is the key to increasing the capacity for aerobic glycolytic and lipolytic capacity
(Laursen, 2010). Training program theory and plans that have been shown to be successful for both age
group as well as elite triathletes will be discussed subsequently in the section on ‘training’.

Core temperature

The chemical energy conversion of macronutrients to the mechanical energy that powers a triathlete
around an Ironman course elicits an accompanying release of energy in the form of heat (~75%). While this
energy gives us our warm blooded temperatures required for life, it can also lead to problems when our
heat-producing metabolic rate becomes greater than our ability to release it from our body. This imbalance
is usually seen as a rise in core temperature.

Core temperature, both during and after an Ironman triathlon, has been reported to range from between
34.2 and 40.5°C (Sharwood et al., 2002, 2004; Laursen et al., 2006, 2009). Thus, both hypothermia
(Sharwood et al., 2002, 2004) and hyperthermia can be experienced; the latter occurrence particularly in
hot races (Laursen et al., 2009). Such high body temperatures are associated with fatigue-related
reductions in speed (Laursen et al., 2009). For example, Laursen et al. (2009) presented a case study of an
Ironman triathlete performing in a hot (35°C) Ironman Western Australia race, where the triathlete slowed
markedly after reaching a core temperature of 39.4°C.

Heat transfer in the body occurs through the processes of radiation, conduction, convection and
evaporation. The most powerful of these heat removal processes (~75%) for the exercising human is the
evaporation of sweat, which releases 580 kcal per litre of sweat evaporated from the skin. As described by
Noakes (2006), this adaptation is an advantage we share with only a few other animals, and one that
enabled our successful evolution, as we ran for long distances in the heat of the Savanna desert, chasing
our prey, that were unable to continue further in such heat. While we humans are well-evolved to perform
ultra-endurance exercise, our high sweat rates means that water is removed from our body at high rates,
and must therefore be replaced at appropriate rates. What exactly is an appropriate rate will be the topic of
the next section.

Body weight changes, water balance and hyponatremia

Body mass changes following an Ironman triathlon have been reported to range from between -10.7% and
+3.7% (Speedy et al., 1997; Sharwood et al., 2004; Laursen et al., 2006; Hew-Butler et al., 2007). While it
is often thought that the main contributor to body mass loss during an Ironman will be the aforementioned
sweat rate, another significant source of body mass loss, not always appreciated, will be the mass lost in
the form of oxidized substrate (stored carbohydrate, lipid and protein), generally thought to be in the range
of 1-2 kg (Pastene et al., 1996). Another potential source of body mass loss is the water that is lost when
glycogen is oxidized. Recall that when 1 g of glycogen is stored in skeletal muscle, approximately 3 g of
water is also stored with it (Jeukendrup & Gleeson, 2010). Once muscle glycogen stores (~450 g) are
oxidized during an ultra-endurance triathlon, the water that was stored with it (~1 L) must be released back
into the body. Thus, a triathlete can expect to lose between 2-3 kg of mass in the form of stored substrate
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and water over the course of ultra-endurance event (Brouns, 1991; Pastene et al., 1996; Speedy et al.,
2001). To illustrate, Laursen et al. (2006) showed that well-trained Ironman triathletes performing a ~10 h
Ironman Western Australia lost 2.3+1.2 kg (~3%). Moreover, none of these athletes required medical
attention. Thus, well-trained Ironman triathletes should expect to lose about 3% of their body mass (~2-3
kg) over the course of an Ironman event, without any adverse consequences.

In fact, athletes that either do not lose much mass, or gain mass during the course of an ultra-endurance
event from drinking, are more likely to develop a dilutional hyponatremia (Speedy et al., 1997, 2001;
Noakes, 2010), as defined as a serum sodium concentration less than 135 mEq:-L-'. For example, Speedy
et al. (1997) showed an inverse relationship between postrace sodium concentrations and percentage
change in body weight (r =-0.63) in the New Zealand Ironman.

Hyponatremia has been reported as a common medical occurrence in Ironman triathlons since the early
1980’s. For example, Hiller et al. (1987) showed that 27% (17/64) of studied athletes requiring medical care
in the 1982-1985 Hawaii Ironman triathlons were hyponatremic following the race. Initial attempts to lower
the occurrence of hyponatremia were to supplement with sodium tablets during the race, but these studies
showed no effect of salt supplementation (Speedy et al., 2002; Hew-Butler et al., 2006). While fluid
overload appears to be the main cause of hyponatremia (Speedy et al., 1997, 2001; Noakes, 2010), it can
still occur when athletes lose body mass. For example, in the aforementioned case study (Laursen et al.,
2009), the athlete lost 2% of his body mass during a hot (33.1°C) Ironman, but still became hyponatremic
at the halfway point of the marathon run (131 mEq-L-"). While a high fluid consumption during the cycle
phase (1.71 L-h-"), which exceeded this athletes’ sweat rate (1.42 L-h-1), was a potential cause of the
hyponatremia, another could have been a heat- and/or exercise-induced oversecretion of arginine
vasopressin (AVP; Hew-Butler et al., 2008). Thus, the peak high core temperature (39.4°C) mentioned
previously that likely caused the triathlete to slow may also have stimulated a nonosmotic AVP secretion,
leading to fluid retention and a dilutional hyponatremia (Laursen et al., 2009). Indeed, Speedy et al. (2001)
have also shown that hyponatremia can develop with modest levels of fluid intakes.

Drinking guidelines for long distance triathletes

Guidelines for drinking have been heavily debated in recent years. Earlier recommendations based on
laboratory studies recommended that athletes should drink early, and as much fluid as tolerable (Sawka &
Coyle, 1999), or at levels that match sweat rate (Convertino et al., 1996). This message, purported heavily
in the media and through commercial interests, created a fear of dehydration for athletes and practitioners,
that continues to resonate within the industry to this day (Noakes, 2008, 2010).

Noakes (2007) argues however that athletes can safely gauge fluid replacement using their innate serum
osmolality-based thirst mechanism. That is, that we will drink to our level of thirst, which is governed by
hypothalamic osmoreceptors that relay information pertaining to the level of blood osmolality. What may
happen in some cases of athletes performing long distance triathlons, especially during the latter stages of
an event, is that the pain, fatigue and slowing of pace that generally occurs (Abbiss & Laursen, 2008), may
be interpreted incorrectly as a sign of dehydration, which could prompt an athlete to drink and confound the
problem. One initiative put in place by both New Zealand and South African Ironman races, has been to
reduce the number of drink stations available on the course, to lower the opportunity to drink. This action
has successfully lessened the occurrence of hyponatremia in long distance triathlon racing, and is an action
that should be followed by long distance triathlon race organizers throughout the world (Sharwood et al.,
2002, 2004; Wharam et al., 2006).
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In summary, there is no reason | can see why athletes need specific recommendations for fluids volumes,
as these will depend largely on sweat rates, that will be influenced by environmental temperatures,
metabolic rates and resulting core temperatures. Thus, the best advice for athletes competing in a long
distance triathlon is to ensure there is availability of fluids, but to drink according to thirst.

Muscle cramps

Exercise-associated muscle camping is defined as involuntary painful skeletal muscle spasms that occur
during or immediately after physical exercise (Schwellnus et al., 1997). In long distance triathletes, these
are typically localized in the calf, hamstring or quadriceps muscles. While this is a common occurrence
found during or after a long distance triathlon, the aetiology and risk factors for cramping remain somewhat
unclear and controversial. Traditional hypotheses state that heat (Armstrong et al., 2007), dehydration and
electrolyte imbalances (Eichner et al., 2007) are the cause of such cramping. However, a number of studies
have now convincingly shown no relationship between the occurrence of such cramping and either
dehydration or electrolyte changes in marathon runners (Schwellnus et al., 2004) or Ironman triathletes
(Sulzer et al., 2005; Schwellnus et al., 2010). Instead, a recent study by Schwellnus et al. (2010) showed
that a history of muscle cramping and an overall faster race time were the main predictors of exercise-
associated muscle cramping in 210 triathletes competing in the South African Ironman. In this study,
triathletes who cramped also tended to predict faster overall cycle and run times before the race, and
attempted to cycle and run faster during the race, compared with non-cramping athletes who reported
similar past performances (Schwellnus et al., 2010). These findings compare with the case study by
Laursen et al. (2009), that showed an athlete performing the first 60 minutes of the marathon run phase at
a high intensity (14 km-h-") that caused his core temperature to reach ‘critical levels’ (39.4°C), before he
slowed, cramped severely at the halfway point of the marathon run, and walked the remaining 21 km. This
athlete had a history of faster races, and a desire to finish much faster than he did (Laursen et al., 2009).

These aforementioned findings support Schwellnus et al.’s (1997) ‘muscle fatigue’ cramping model,
suggesting that ‘neuromuscular fatigue’ leads to abnormal neuromuscular control, namely an increase in
muscle spindle afferent activity, a reduction in Golgi tendon organ afferent activity, and a resulting increase
in alpha motor neuron activity and the muscle spasm observed (Schwellnus et al., 1997). The practical
application of this information is that long distance triathletes need to pace themselves at speeds closer to,
or slightly below, those that are practiced (O'Toole, 1989), so as to avoid excessive fatigue and resulting
muscle cramps (Laursen et al., 2009). This idea will be expanded on in both the subsequent training and
pacing sections of the manuscript.

Muscle damage

One of the revealing signs of the physical toll placed on the long distance triathlete is the degree of muscle
damage it inflicts. This has been characterized by muscle soreness, loss of muscle function, and reductions
in aerobic capacity (Suzuki et al., 2006; Nosaka et al., 2010). For example, Suzuki et al. (2006) showed
reductions in muscle strength and jump height, with accompanying increases in muscle soreness, blood
markers of muscle damage, and inflammation in the 24 h period following an Ironman triathlon.

The majority of the muscle damage that occurs during a long distance triathlon originates from the
eccentric-based contractions of the run phase (Farber et al., 1991). Moreover, the run phase performance
tends to be most highly correlated to overall long distance triathlon performance (Laursen et al., 2005;
Knechtle et al., 2010). Thus, training appropriately to run a marathon following long distance swimming and
cycling is important. Specific run training results in adaptations that reduce muscle damage following
subsequent bouts of exercise. In time, fibres are regenerated, and adaptations in the connective tissue
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provide greater resilience to insult during the critical long distance triathlon event (Ebbeling & Clarkson,
1989). Such adaptations create more resilient and elastic muscle fibres and tendons, lessen muscle
damage and pain, and improve run performance ability. Of course, significant muscle damage occurs
irrespective of training level, and may actually be higher in well trained athletes due to the higher run
speeds, greater muscle mass engaged, and reduced amount of walking relative to less trained triathletes.
Regardless, a well-trained triathlete can recover from this muscle damage within approximately one week
(Nosaka et al., 2010).

PREPARATION FOR LONG DISTANCE TRIATHLON

Bioenergetic goals

The outlined demands of the long distance triathlon highlight that fitness level from training makes the
largest influence towards reducing the impact that these stresses have on the triathlete during a long
distance triathlon, and the resulting performance. With respect to bioenergetics, success in the triathlon will
stem from the ability of the triathlete to oxidise macronutrients at high rates and to transfer this energy to
the mechanical energy needed to power the triathlete around the triathlon course. The energy required will
be mainly provided through oxidative phosphorylation in the mitochondria of the active muscles, and the
three inputs include oxygen, free adenosine diphophate and inorganic phosphate, and reducing
equivalents. The reducing equivalents are derived from the metabolism of fat and carbohydrate, which are
mobilized from intramuscular stores, adipose tissue, liver and exogenously ingested carbohydrate (Spriet,
2007). Exercise training creates a cascade of signals (Coffee & Hawley, 2007) that put into motion an
upregulation of defense systems that permit 1) an increase in the rate of energy production from both
aerobic pathways, 2) a tighter metabolic control (i.e., matching ATP production with ATP hydrolysis), 3) an
increased economy of motion, and therefore 4) less fatigue in working muscles during exercise (Hawley &
Spargo, 2007).

Kimber et al. (2002) showed in recreational triathletes competing in the New Zealand Ironman event, that
total energy expenditure approximated 10,000 kcal, but that energy intake (94% carbohydrate) was around
4000 kcal. Thus, about 6000 kcal of energy originates from endogenous (stored) macronutrient sources
during an Ironman event (Kimber et al., 2002). Hence, there is an obvious need for both high rates of fat
and carbohydrate oxidation. Carbohydrate stores in the body however are limited, with a typical well-trained
male athlete storing around 450 g of carbohydrate (~350 g as muscle glycogen, ~95 g as liver glycogen
and ~5 g as circulating blood glucose). This approximates 1800 kcal of energy. Subtracting this 1800 kcal
of endogenous carbohydrate from the pre-calculated 6000 kcal energy deficit, leaves 4200 kcal that must
be oxidised from endogenous protein and lipid sources during an Ironman event. With oxidation of amino
acids from endogenous protein stores thought to be minimal, the ability to oxidise fat and carbohydrate at
high rates will contribute highly to long distance triathlon success.

Training principles

With respect to training for a long distance triathlon, there are probably a number of different ways one
could go about it (Laursen, 2010). Nevertheless, the basic principles of training include progressive
overload, specificity, frequency, duration, intensity, and recovery (Lambert et al., 2008). The foundation of
any exercise training program is the principle of progressive overload. This could be achieved by
progressively increasing how long you train for in a session (duration), how hard you perform that session
(intensity), how often you perform your training (frequency) and how much (or little) recovery or rest is
inserted between your sessions. The principle of specificity states simply that you get what you train for,
and for the long distance triathlete, time spent swimming, cycling and running needs to be relatively high.
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With respect to training frequency, this will depend on the level of the athlete, and the stage of the program,
but it is not unusual for an elite triathlete to perform two or three disciplines in a given day on multiple days
(O'Toole, 1989).

Exercising for long durations is a critical part of training for the long distance triathlete. When exercise is
prolonged, this depletes carbohydrate reserves, and the continuation of exercise relies more and more on
fat as a fuel source. Such training elicits important adaptations during the recovery phase that will permit
more fat to be used earlier on in a subsequent training session, thereby reducing the formation of lactic
acid, slowing the rate of glycogen breakdown and reducing phosphocreatine use (Hawley, 2002). This
adaptation plays a major role in the increased endurance ability shown after training. Training intensity also
has a profound effect on acute changes in fitness levels (Laursen & Jenkins, 2002). While the acute
benefits of high-intensity training are impressive, the ability to perform such training is limited, and too much
high-intensity training can lead to overtraining (Billat et al., 1999).

Typical long distance triathlete practices

Not surprising, the training practices of long distance triathletes and their beliefs regarding the program that
best leads to success tends to vary (O'Toole, 1989; Gulbin & Gaffney, 1999). In 242 recreationally-trained
triathletes competing at the Lanzarote Ironman triathlon, Gulbin & Gaffney (1999) reported that athletes
spent 21.5 + 10.8 weeks preparing, and on average, swam 8.8 + 4.3 km-wk!, cycled 270 + 107 km-wk-!,
and ran 58.2 + 21.9 km-wk-", at paces of 1 min 48 s-100m!, 31.8 km-hr-', and 4.55 min-km, respectively.
These data compare with those reported earlier by O'Toole (1989), where athletes, on average, swam,
cycled and ran, approximately 11.5 km-wk-!, 363 km-wk-" and 72 km-wk-", respectively; although distance
and training pace varied substantially. O'Toole (1989) noted from her study that younger and faster
triathletes (less than 10.5 h in the Hawaii Ironman Triathlon) tended to train greater distances and at faster
paces. However using regression analysis, Gulbin & Gaffney (1999) noted that long distance triathlon
performance was predicted by previous best Olympic distance triathlon performance, weekly cycling
distance and longest training ride (R2 = 0.57). This potential importance of cycle training for the long
distance triathlete is expanded on in the practical training recommendation section below.

Practical training recommendations

The aforementioned principles of any exercise training program are important to appreciate for the high
performing triathlete. The systematic way upon which these principles get organized and put into practice
fall under the concept of periodization, which is the art of varying the training session, its intensity, its
duration, how often its performed, and how much rest and recovery is performed in between (Lambert et
al., 2008). In terms of the distribution of intensity and volume in the program of any endurance athlete’s
training program, it is becoming increasingly clear that an 80:20 distribution of training, in terms of the
percentage of training completed below and above the ventilatory threshold, may be optimal (Laursen,
2010; Seiler, 2010). While it is unclear why this distribution may be optimal, it may be that such a training
intensity distribution elicits an appropriate degree of molecular signaling to the genes that transcribe the
proteins responsible for mitochondrial biogenesis and substrate handling, while at the same time,
preserving autonomic balance of the organism (Laursen, 2010; Seiler, 2010).

When one first compares the Ironman distance triathlon with the Olympic distance triathlon (1500 m swim,
40 km cycle, 10 km run), roughly four times the distance, the initial thought is that completing the Ironman
distance must require four times the training. Interesting however, in a comparison between elite short and
long-distance British triathletes, with the exception of swim speed, which was faster in short-distance
triathletes, there was no difference in maximal or submaximal physiological characteristics (i.e., maximal
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oxygen uptake, economy or thresholds) measured in cycling and running between the groups (Millet et al.,
2003). Such a finding suggests that training programs might also be similar between short and long
distance elite triathletes, and in this authors observations, this tends to be the case with both elite short and
long distance ftriathletes tending to train around 30 hours per week. While the training level and
physiological capacities of swimming, cycling and running compares between the triathlon distance
specialists, there may be a slightly different training discipline emphasis, specifically with respect to a
greater volume and intensity of cycle training, a greater volume of run training, and a reduced volume of
swim training for the successful long distance triathlete (O'Toole, 1989; Gulbin & Gaffney, 1999). The
greater fitness generated from the higher volume and intensity of cycle training creates the fatigue
resistance that enables a long distance triathlete to cycle 90 or 180 km quickly and relatively less fatigued
before running a marathon or half marathon successfully.

Example training plans

While there are an infinite number of ways one can design a training program, it can be helpful to observe
programs that have shown some success. Tables 1, 2 and 3 show weekly training program examples for
novice (12-14 h), well-trained (10-11 h) and elite (<9.5 h) long distance triathletes preparing for an Ironman.

Table 1. Example of an elite Ironman triathlete training program (sub 9 h 30 min). Training sessions will
vary in accordance with the training cycle with the total weekly training time being 30 £ 3 h. Training
sessions in italics are training sessions that would be added to the general training regime in peak training
volume periods.

Day of the Week

Monday REST REST REST

Tuesday Strength (TD = 4000m) Long run 2 — 3h (can include
race specific speeds)

Wednesday Race specific (TD = Higher intensity interval e.g.  30-50 min E1
3500) 8 x4 min (E3/E4) 2 min
recovery
Thursday 2h=2h30min (E1 50-1 h 15 min run (include
negative split e.g. 25 min E1,
25 min E2ii)
Friday Aerobic Development 1h30min-2h(E1) Race specific run e.g: 8 x 2 km
(TD = 4000-4500) (descend in 2's, 2@E2, 2@E2i,

2@E2ii, 2@E3, 2@E4)

Saturday Long ride 5- 7 h (E1)
Sunday Aerobic Development 3-4 hride inc ~80% of time  45-60 min run off the bike
(TD = 3500) atlronman Race pace (E2i-  (80% include target Ironman
E2ii) race pace; E2i — E2ii)

TD = Total distance. E1 = Endurance training zone 1 (<V'T1). E2i = Endurance training zone 2 one (>VT1 to < VT, lower end).
E2i = Endurance training zone 2 two (>VT1 to < VT, upper end). E3 = Endurance training zone 3 (equal to VT2, threshold). E4 =
Endurance training zone 4 (>V'T5)
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Table 2. Example of a well-trained Ironman triathlete training program (sub 10 h to 12 h). Training sessions
will vary in accordance with the training cycle with the total weekly training time being 20 + 3 h.

Day of the Week

Monday REST

Tuesday Strength (TD = 2000m)

Wednesday Race specific (TD =
3500)

Thursday

Friday Aerobic Development
(TD = 3000- 3500)

Saturday

Sunday

REST

Higher intensity interval e.g.

8 x 4 min (E3/E4) 2 min
recovery

2 hride E2

Long ride 4- 6 h (E1)

2-3 h ride inc ~80% of time
at Ironman Race pace (E2i-

REST

Longrun 1.5-3 h

Race specific run e.g: 6-8 x 2
km (descend in 2's, 2@E2,
2@E2i, 2@E2ii, 2@E3, 2@E4)

45-60 min run off the bike
(80% include target Ironman

Table 3. Example of a novice Ironman triathlete training program (> 12 h). Training sessions will vary in
accordance with the training cycle with the total weekly training time being 12 + 2 h.

Day of the Week Swim
Monday REST

Tuesday

Wednesday Strength (TD = 3000-

4000m)

Thursday

Friday Race specific (TD =
2500)

Saturday

Sunday

Bike

REST

Higher intensity interval e.g.

9x 5 min (1@E2i, 1@E2ii,
1@E3) 2 min recovery

Ride 1.5 h (E1)

Long ride 3- 5.5 h (E1)

REST

Race specific run e.g: 6-8 x 1
km (descend in 2's, 2@E2,
2@E2i, 2@E2ii, 2@E3, 2@E4)

Longrun 1.5-2.5h

TD = Total distance. E1 = Endurance training zone 1 (<V'T1). E2i = Endurance training zone 2 one (>VT1 to < VT,, lower end).
E2i = Endurance training zone 2 two (>VT1 to < VT2, upper end). E3 = Endurance training zone 3 (equal to VT2, threshold). E4 =
Endurance training zone 4 (>V'T;)
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LONG DISTANCE TRIATHLON PERFORMANCE

Pre-event preparation

While the previous section was centered on long-term preparation for an ultra-endurance triathlon, the
following section will focus on the final two weeks leading into the event. Short-term pre-race strategies that
have shown success at improving acute performance include tapering, heat acclimation and ensuring
adequate carbohydrate, fluid and caffeine ingestion.

Tapering

The taper is the phase of the training program characterized by reduced training load in the final days
leading up to major competition (Mujika, 2010). The aim of this phase is to lower accumulated fatigue of the
prior intensive training block, maximize physiological adaptations and consequently improve long distance
triathlon performance. This is generally achieved by reducing the number of training sessions, making them
less intense or shorter in duration. The challenge for the long distance triathlon coach is to design a taper
that avoids detraining, and retains or improves adaptations and subsequent performance. Tapering
specifically for the triathlete is reviewed thoroughly in this symposium, and for more information on the topic
the reader is referred to the work in this issue of the journal (Mujika, in press).

Heat acclimation

Long distance triathlons usually take place in summer months and as a result tend to be performed in
conditions of high ambient temperatures. These warm environments create a unique physiological
challenge — not only must blood be distributed to working muscles to power the athlete over the triathlon
course, but substantial blood must also be diverted to the skin to dissipate excess heat. One strategy that
has been found to successfully improve performance is the act of heat acclimation (Lorenzo et al., 2010).
Heat acclimation has been shown to induce a number of positive physiological adaptations, including
reduced oxygen uptake at a given power output, muscle glycogen sparing, reduced blood lactate at a given
power output, plasma volume expansion, improved myocardial efficiency and increased ventricular
compliance. Using a 10-day heat acclimation program (90 min cycling at 50%VO2max in 40°C, 30%rh),
Lorenzo et al. (2010) showed improvements in one-hour time trial performance in hot (38°C, 30%rh; +8%)
and cool conditions (13°C, 30%rh, +5%) in well trained cyclists. Heat acclimation also increased plasma
volume, power output at lactate threshold, maximal cardiac output and VOzmax relative to the control group
that performed the same 10-day exercise protocol under cool conditions. These findings indicate that heat
acclimating could be of benefit for the long distance triathlete irrespective of whether or not it happens to be
hot on race day. Although it may be difficult to find the facilities needed to create the warm environment
required for this maneuver, the triathlete may be able to perform a modified version of the protocol used by
Lorenzo et al. (2010) by completing light exercise in the heat over the final days leading up to their event.

Carbohydrate loading

The availability of carbohydrate as a substrate for muscle metabolism and central nervous system support
is a critical contributor to long distance triathlon performance (Burke, 2010). As mentioned, total body
carbohydrate stores are limited, and are substantially less than the fuel requirements of the long distance
triathlon. Therefore, in an effort to boost these limited stores, carbohydrate loading, or consuming
carbohydrate intakes of 10-12 g-kg-'-day-! over the 36-48 hours leading up to competition, are often
promoted to improve performance (Burke, 2007). For example, Rauch et al. (1995) showed that three days
of carbohydrate loading improved power output during a 3 h high intensity cycling trial in eight endurance
trained cyclists. In line with this study, it seems prudent to endorse similar recommendations and for
athletes to consume 10-12 g-kg-'-day-! over the 36-48 hours leading up to a long distance triathlon.
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Hydration

As mentioned earlier in the review, the importance of hydration status on exercise performance may have
been previously overstated (Noakes, 2008). Nevertheless, it seems prudent to ensure adequate hydration
to the level of one’s thirst. Adequate water levels are also required to store the glycogen goals of
carbohydrate loading. This was shown indirectly in the study by Laursen et al. (2006), where athletes were
1 kg heavier 30 min prior to starting their Ironman event than when weighed just two days prior to the
I[ronman.

Caffeine

In 2004, caffeine was removed from the list of prohibited substances of the World Anti-Doping Agency,
meaning that athletes can consume caffeine either in their background diets or for the specific purposes of
performance enhancement without fear of sanctions. Not surprisingly then, caffeine was reported to have
been used by 89% of athletes competing in the 2005 Hawaii Ironman triathlon, and at levels that would be
considered to be performance enhancing (Desbrow & Leveritt, 2006). While the mechanisms of how
caffeine enhances prolonged performance are not entirely clear, the potentially beneficial effects include
the mobilisation of fat from adipose tissue and the muscle cell, stimulation of epinephrine release, direct
effects on cardiac muscle, direct changes to muscle contractility and alterations to the central nervous
system to change perceptions of effort or fatigue (Burke, 2008). With performance enhancing levels shown
to be around the 3 mg-kg! dose level, this seems an appropriate dose to recommend for long distance
triathletes. Pill or tablet form tends to be the best way to ensure that the appropriate dosage is taken, as
certain products that claim to have caffeine in them also contain other substances that could compete with
caffeine’s effect. As levels tend to peak about an hour after consumption, this seems an appropriate period
to ingest caffeine prior to race start. Furthermore, re-ingestion of this dose every 3 h seems logical to
balance the caffeine removal rates. Of course, there are a number of side effects (Burke, 2008), and athlete
need to experiment with their chosen dosage in practice before using caffeine in an important long distance
triathlon event.

Event considerations

The training is completed, the pre-race preparation is in place and the race has begun. What practices now
might assist to give the long distance triathlete the best performance they can achieve on the day? The
final ingredients towards optimising long distance triathlon performance may now come down to
appropriate nutrition in the form of carbohydrate and fluid consumption, and pacing strategy.

Carbohydrate assimilation

As established throughout the manuscript, the energy demands of a long distance triathlon are high. Once
the race has begun, it is important to supplement the muscle cells with a source of exogenous
carbohydrate to provide the reducing equivalents required for the needed high aerobic metabolic rates.
High carbohydrate ingestions rates have been shown to be related to long distance triathlon performance.
For example, in male triathletes, Kimber et al. (2002) showed that Ironman finishing time was inversely
related to carbohydrate intake (g-kg-'-h-') during the marathon run (r = — 0.75, p < 0.05). As such,
increasing carbohydrate intake during may be a useful strategy for improving Ironman performance.

Just how much carbohydrate a triathlete should ingest during ultra-endurance exercise has received an
increase in interest of late. Previously, it was found that carbohydrate oxidation was limited to 1 g-min-' due
to a saturation of SGLT1 glucose transporters. However, by using a mix of glucose and fructose in the
carbohydrate source, it was shown that carbohydrate delivery and oxidation could be increased to 1.75
g-min-'. This increased carbohydrate absorption occurs via fructose absorption through the GLUT5
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transporter, which is converted to glucose in the liver. The increased carbohydrate oxidation with multiple
transportable carbohydrates is also accompanied by increased fluid delivery and improved oxidation
efficiency, and with this, a reduced likelihood of gastrointestinal distress (Jeukendrup, 2010). Recent
studies have also shown reduced fatigue and improved exercise performance with multiple transportable
carbohydrates compared with single carbohydrate sources, and for review, the reader is referred to the
recent work of Jeukendrup (2010).

Hydration guidelines

Guidelines for drinking have been discussed thoroughly in this manuscript and will not be extended further.
Hydration requirements will fluctuate with environmental condition and metabolic rate, and it appears that
the most prudent advice is to drink throughout a long distance triathlon in accordance with thirst (Noakes,
2007). Because environmental conditions are sometimes not known until after the gun goes off, a potential
strategy may be to have a variety of more (gels, cola) and less (weak carbohydrate-electrolyte)
concentrated drinks available for use during the bike and run phases, to self-administer carbohydrate and
fluid levels according to requirements. It is more than likely that most athletes do this intuitively during long
distance triathlon racing.

Pacing

The pacing strategy, or how fast or slow one chooses to perform an event, is known to have an influence
on performance outcome (Abbiss & Laursen, 2008). For example, O'Toole (1989) have shown that faster
finishers in the Hawaii Ironman Triathlon were able to maintain their training paces throughout all three
activities of the triathlon. Typically, long distance triathletes perform a positive pacing strategy,
characterized by a fast initial pace, and then a reduction in pace throughout the remainder of event
(Laursen et al., 2002, 2005). This has been shown as a decline in heart rate at an average rate of 1-2%
per hour during a long distance triathlon (Laursen et al., 2005). Similarly, power output and speed has been
shown to decrease during the 180-km cycle phase of an Ironman triathlon (Abbiss et al., 2008). It is
believed that this progressive reduction in exercise intensity may be the result of glycogen depletion,
neuromuscular fatigue, and/or psychological factors associated with the perception of fatigue (Abbiss &
Laursen, 2008). While it is difficult to do so, long distance triathletes are advised to attempt to perform an
even pacing strategy, and to perform their long distance triathlon at a pace that is similar to that which is
performed in training (O'Toole, 1989).

SUMMARY

In summary, long distance triathlons, including half and full distance Ironman events, require prolonged (>4
h) durations of moderate to high intensity exercise, which mostly use energy from the oxidation of fat and
carbohydrate in the range of 4500 and 11,500 kcal. Long distance triathlon training programs generally
consist of long duration cycling and running completed at relatively fast speeds. Such training improves fat
oxidation rates, lowers lactate production, spares glycogen and increases fatigue resistance. Pre-event
preparation strategies include the taper, ensuring adequate hydration, carbohydrate loading, acclimating to
the heat, and consuming 3 mg-kg' of caffeine one hour prior to race start. During long distance triathlon
racing, athletes should pace themselves by performing at speeds that resemble those practiced in training,
consuming up to 1.75 g-min-' of carbohydrate using a mix of fructose and glucose and drinking according to
thirst.
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