Technical skill differences in stroke propulsion between high level athletes in triathlon and top level swimmers
DOI:
https://doi.org/10.4100/jhse.2011.62.15Keywords:
Front crawl swimming, Olympic triathlon, Differential pressure, PerformanceAbstract
In the latest decades the arm propulsion mechanism in human swimming has been an issue of great interest for researchers. The availability of new devices which can easily measure the stroke propulsion by means of a non invasive gauge allows the study of technical skills in real swimming, without artificial and distorting conditions like in a swimming flume or in tethered swimming. Performance in swimming is a crucial factor in another sport such as Olympic Triathlon, however we saw that the triathlon athletes presented shortfalls and differences with respect to expert swimmer, particularly in mean pressure and resultant momentum, but not maximum pressure. Each athlete showed a distinctive shape of the pressure curve, but triathletes present a greater variability in the pressure pattern than competitive swimmers, as is the case of novice vs. expert swimmers observed in previous studies. The possibility of pointing out some differences in stroke propulsion between top level swimmers and high level athletes in triathlon could give some useful indications for coaches in planning triathlon training.
Downloads
References
Arellano, R., Terrés-Nicoli, J.M., Redondo, J. Fundamental Hydrodynamics of Swimming Propulsion. In: JP Vilas-Boas, F Alves, A Marques (Eds.). Biomechanics and medicine in swimming X. Porto: Portuguese Journal of Sport Science; 2006.
Arellano, R. Vortices and propulsion. In: R Sanders, J Linsten (Eds.). Swimming: Applied Proceedings of the XVII International Symposium on Biomechanics in Sports. Perth: School of Biomedical and Sports Science; 1999.
Berger, M.A.M., De Groot, G., Hollander, A.P. Hydrodynamic drag and lift forces on human hand/arm models. J Biomech. 1995; 28:125-133. https://doi.org/10.1016/0021-9290(94)00053-7
Bonen, A., Wilson, B.A., Yarkony, M., Belcastro, A.N. Maximal oxygen uptake during free, tethered, and flume swimming. Journal of Applied Physiology. 1980; 48(2):232-235.
Bottoni, A., Lanotte, N., Bifaretti, S., Boatto, P., Gatta, G., Bonifazi, M. Direct measurement of stroke propulsion in real swimming by means of a non invasive gauge. In: PL Kjendlie, RK Stallman, J Cabri (Eds.). XIth International Symposium for Biomechanics and Medicine in Swimming. Oslo: Norwegian School of Sport Sciences; 2010.
Counsilman, J.E. The application of Bernoulli's principle to human propulsion in water. In: L Lewillie, JP Clarys (Eds.). First international symposium on biomechanics of swimming. Brussels: Université Libre de Bruxelles; 1971.
Dickinson, M.H., Götz, K.G. The wake dynamics and flight forces of the fruit fly Drosophila Melanogaster. J Exp Biol. 1996; 199:2085-104.
Dickinson, M.H., Lehmann, F-O., Sane, S.P. Wing rotation and the aerodynamic basis of insect flight. Science. 1999; 284(5422):1954-1960. https://doi.org/10.1126/science.284.5422.1954
Hay, J.G., Carmo, J. Swimming techniques used in the flume differ from those used in a pool. In: Proceedings of the XV International Society of Biomechanics Congress. University of Jyvaskyla; 1995. Pp. 372-373.
Lauder, M.A., Dabnichki, P., Bartlett, R.M., Mckee, T. Direct measurement of propulsive forces in swimming using a mechanical arm. In: SJ Haake, AJ Subic (Eds.). The Engineering of Sport: Research, Development and Innovation. Blackwell Science: Oxford; 2000.
Loetz, C., Reischle, K., Schmitt, G. The evaluation of highly skilled swimmers via quantitative and qualitative analysis. In: BE Ungerechts, K Reischle, K Wilke (Eds.). Swimming Science V. Human Kinetics Books; 1988.
Maglischo, E.W. The Basic propulsive sweeps in competitive swimming. In: WE Morrison. VIIth International Symposium of the Society of Biomechanics in Sports. Victoria: Footscray; 1988.
Matsuuchi, K., Nomura, J., Sakakibara, T., Shintani, H., Ungerechts, B.E. Unsteady flow field around a human hand and propulsive force in swimming. J Biomech. 2008; 42(1):42-47. https://doi.org/10.1016/j.jbiomech.2008.10.009
Schleihauf, R.E., Higgins, J.R., Hinrichs, R., Leudke, D., Maglischo, C., Maglischo, E.W., Thayer, A. Propulsive techniques: front crawl stroke, butterfly, backstroke, and breaststroke. In: BE Ungerechts, K Reischle, K Wilke (Eds.). Swimming Science V, International Series on Sport Sciences, vol. 18. Champaign: Human Kinetics: 1988.
Schleihauf, R.E. A biomechanical analysis of freestyle. Swimming technique. 1974; 11:89-96.
Schleihauf, R.E. A hydrodynamical analysis of swimming propulsion. In: TA Bedingfield (Ed.). Swimming III. Baltimore: University Park Press; 1979.
Sevec, O.J. Biofeedback for pulling efficiency. Swimming technique. 1982; 19:38-46.
Takagi, H., Sanders, R. Measurement of propulsion by the hand during competitive swimming. In: S Ujihashi, SJ Haake (Eds.). The Engineering of Sport 4. Blackwell Publishing; 2002.
Takagi, H., Wilson, B. Calculating hydrodynamic force by using pressure differences in swimming. In: K Keskinen, P Komi, AP Hollander (Eds.). Biomechanics and Medicine in Swimming VIII. University of Jyvaskyia; 1999.
Toussaint, H.M., Berg, C., Beek, W.J. "Pumped-up propulsion" during front crawl swimming. Med Sci Sport Exer. 2002; 34(2):314-319. https://doi.org/10.1097/00005768-200202000-00020
Toussaint, H.M. An alternative fluid dynamic explanation for propulsion in front crawl swimming. In: R Sanders, Y Hong (Eds.). Applied program: Application of biomechanical study in swimming. Hong Kong: The Chinese University of Hong Kong; 2000.
Wilson, B.D., Takagi, H., Pease, D.L. Technique comparison of pool and flume swimming. VIII International Symposium on Biomechanics and Medicine in Swimming. University of Jyväskylä: Jyväskylä, Finland; 1998.
Downloads
Statistics
How to Cite
Issue
Section
License
Copyright (c) 2011 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.