Journal of Human Sport and Exercise

A longitudinal study of kinematic stride characteristics in maximal sprint running

Klaus Mattes, Nina Schaffert, Nele Habermann, Thomas Mühlbach



Purpose of the present study was to measure the kinematic stride characteristics of track-and-field-sprinters and jumpers in maximal sprint-running during different training periods (TP) of a double-periodisation (DP). 26 participants (7 females, age: 22.7 ± 5.7yrs, body mass: 60.1 ± 6.7kg, body height: 172.1 ± 4.4cm; 19 males, age: 20.9 ± 3.3yrs, body mass: 73.7 ± 6.5kg, body height: 182.3 ± 7.5cm) participated in flying 30-meter-sprints. Kinematic stride parameters (stride-velocity, stride-length, stride-frequency, contact-time, flight-time and stride-rhythm) were measured for every single stride with Optojump (Microgate S.r.L., Italy). The training data were collected via protocol. A variance analysis with repeated measures was calculated for 3 respectively 6 TPs as well as multiple regression functions for the stride-velocity. The longitudinal results showed significant values for the 6 TPs, however cyclic increase of maximal sprint-velocity (on average 0.42 ± 0.08m/s) with a DP that corresponded with the recorded training data. 3 TPs differed significantly in average stride-velocity, stride-length, stride-frequency and contact-time of the maximal sprint, but not in flight-time and stride-rhythm. Our findings suggest that kinematic stride characteristics depend on TP. A systematic training control to increase the sprint-speed must take into account these changes of the kinematic parameter during the training year.


Kinematic analysis; Track-And-Field; Sprinters and jumpers; Double-Periodisation; Flying 30-Meter-Sprint


Ae, M., Ito, A. & Suzuki, M. (1992). The men's 100 metres. IAAF, 47-52.

Alcaraz, P. E., Palao, J. M., & Elvira, J. L. (2009). Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res, 23(2), 480-485.

Alcaraz, P. E., Palao, J. M., Elvira, J. L., & Linthorne, N. P. (2008). Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res, 22(3), 890-897.

Bosco, C. & Vittori, C. (1986). Biomechanical characteristics of sprint running during maximal and supra-maximal speed. IAAF 1, 39-45.

Bosco, C.,Vittori, C., Matteucci, E. (1995). Considerazioni sulle variazioni dinamiche di alcuni parametri biomeccanici nela corsa. Atleticastudi - supplemento 2, 155-162.

Brüggemann G.P., Glad B. (1990): Time analysis of the sprint events. Scientific research project at the games of the XXIV. Olympiad – Seoul 1988 – final report. New Studies in Athletics, Supplement.

Coh, M., Colja, I., Dolenec, A. & Stuhec, S. (1998). Correlation of kinematic and dynamic characteristics of the maximal velocity sprinting stride of female sprinters. ISBS' 98 Proceedings II.

Coh, M., Milanovic, D. & Dolenec A. (1999). Biomechanische Merkmale des Sprintschritts von Sprinterinnen der Spitzenklasse. Leistungssport, 29(5), 41-46.

Cohen, J. (1992). Statistics a power primer. Psychology Bulletin 112: 155–159.

Cronin, J. B., & Hansen, K. (2006). Resisted sprint training for the acceleration phase of sprinting. Strength Cond J, 28(4), 42-51.

Delecluse, C. (1997). Influence of strength training on sprint running performance. Sports Medicine, 24, 147–156.

Delecluse, C., Ponnet, H. & Diels, R. (1998). Stride characteristics related to running velocity in maximal sprint running. H.J. Riehle, M.M. Vieten (Hrsg.) 16. International Symposium on Biomechanics in Sports. Konstanz, Germany, July 21-25, 1998.

Gajer, B., Thepaut-Mathieu, C., and Lehenaff, D. (1999). Evolution of stride and amplitude during course of the 100m event in athletics. New Studies in Athletics, 14, 43-50.

Hunter, J. P., Marshall, R. N., and McNair, P. J. (2004). Interaction of step length and step rate during sprint running. Medicine and Science in Sports and Exercise, 36, 261-271.

Joch, W. (1992). Structured training plan for the development sprint training (Rahmentrainingsplan für das Aufbautraining Sprint.) Aachen: Meyer & Meyer.

Killing, W., Bartschat, E., Czingon, H., Knapp, U., Kurschilgen, B. & Schlottke, K. (2008). Youth athletics. Structured training plan of the German Track and Field Association (DLV) for the jump diciplines during the development training. (Jugendleichtathletik. Rahmentrainingsplan des Deutschen Leichtathletik-Verbandes für die Sprungdisziplinen im Aufbautraining), 185. Münster: Philippka-Sportverlag.

Kunz, H. & Kaufmann, D. A. (1981). Biomechanical analysis of sprinting. British Journal of Sports Medicine 15, 3, 177-181.

Lockie, R. G., Murphy, A. J., & Spinks, C. D. (2003). Effects of resisted sled towing on sprint kinematics in field-sport athletes. J Strength Cond Res, 17(4), 760-767.<0760:EORSTO>2.0.CO;2

Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal, and supramaximal running speeds in sprinters. Euro J Appl Physiol, 55, 553-561.

Mero, A. & Komi, P. V. (1994). EMG, Force and Power Analysis of Sprint-Specific Strength Exercises. Journal of Applied Biomechanics 10 (1), 1-13.

Mero, A., Komi, P. V., and Gregor, R. J. (1992). Biomechanics of sprint running: A review. Sports Medicine, 13, 376-392.

Saziorski, W.M., Aljeschinski, S.L. & Jakunin, N.A. (1998). Biomechanische Grundlagen der Ausdauer. Berlin: Sportverlag.

Tidow, G., Wiemann, K. (1994). Zur Optimierung des Sprintlaufs –Bewegungsanalytische Aspekte. Leistungssport 5, 14-19.

Viitasalo, J.T. & Bosco, C. (1982). Electromechanical behaviour of human muscles in vertical jumps. European Jjournal of applied physiology and occupational physiology, 48, 2, 253-261.

Wank, V., Frick, U. & Schmidtbleicher, D. (1998). Kinematics and electromyography of lower limb muscles in over ground and treadmill running. International Journal of sport medicine, 19, 7, 455-461.

Young, W. B., Benton, D., Duthie, G., & Pryor, J. (2001). Resistance Training for Short Sprints and Maximum-speed Sprints. Strength Cond J, 23(2), 7-13.


Copyright (c) 2015 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.