The effects of a four week primary and secondary speed training protocol on 40 yard sprint times in female college soccer players
DOI:
https://doi.org/10.14198/jhse.2014.93.04Keywords:
Biomechanics, Sprinting, Exercise physiologyAbstract
Improvements in running speed have been attributed to both primary and secondary speed training techniques. Primary techniques involve attention to running mechanics and form, and secondary techniques involve resisted or assisted sprinting. The purpose of this study was to assess the effect of combining both primary and secondary speed training techniques on 40 yard sprint speed in young soccer players. PURPOSE: To compare the effects of pre- and post- four week speed training protocol on 40-yard sprint times in female collegiate soccer players. METHODS: Twelve (19.5+1.5y) normal weight (BMI: 22.7+3.4 kg∙m-2) and body composition (BF: 27.75+3.8%) active white female collegiate soccer players participated in a four week training protocol which implemented primary and secondary speed training methods. A standard running mechanics program was implemented two times per week and was immediately followed by resisted or assisted sprinting. Sled towing was chosen for resisted sprinting, while elastic towing devices were chosen for assisted sprinting. Forty yard sprint times were assessed pre and post protocol. Statistical analysis was conducted using SPSS. RESULTS: A paired samples t-test showed the four week speed training protocol elicited statistically significant reductions in 40 yard sprint times (p<0.001). The average sprint time decreased by 0.248 seconds (pre=5.463+0.066 vs post=5.215+0.053). CONCLUSION: A four week speed training protocol of primary and secondary techniques may play a significant role in reducing 40 yard sprint times in college female soccer athletes. Values are presented as (mean+SEM)
Downloads
References
Ae, M., Itoh, N., Muraki, Y. & Miyashita, K. (1995). Optimal tension of isotonic towing for sprint training. In K. Hakkinen (Ed.), Jyvaskyla: Book of abstracts (pp. 38-39).
Alcaraz, P.E., Palao, J.M., Elvira, J.L. & Linthorne, N.P. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res, 22(3):890-897, 2008. https://doi.org/10.1519/JSC.0b013e31816611ea
Baechle, T.R., & Earle, R.W. (2008). Essentials of strength training and conditioning. Champaign, IL: Human Kinetics
Bloomfield, J., Polman, R., and O'Donoghue, P. Physical demands of different positions in a FA premier league soccer. J Sports Science Med, 6:63-70, 2007.
Bosch, F. & Klomp, R. Running: Biomechanics and Exercise Physiology Applied in Practice. London, United Kingdom: Churchill Livingstone, 2005. pp. 58.
Bradley, P.S., DiMascio, M., Peart, D., Olsen, P., and Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J Strength Cond Res, 24: 2343–2351, 2010. https://doi.org/10.1519/JSC.0b013e3181aeb1b3
Brechue, W.F., Mayhew, J.L., & Piper, F.C. Equipment and running surface alter sprint performance of college football players. J Strength Cond Res, 19(4):821-825, 2005. Brown, T.D. & Vescovi, J.D. Maximum speed: Misconceptions of sprinting. StrengthCond J, 34(2):37-41, 2012.
Cissik, J.M. Technique and speed development for running. NSCA's Performance Training J, 1(8):18-21, 2002.
Cissik, J.M. Means and methods of speed training part 1. Strength Cond J, 26(4):24-29, 2004. https://doi.org/10.1519/00126548-200408000-00005
Cissik, J.M. Means and methods of speed training: Part ll. Strength Cond J, 27(1);18-25, 2005. https://doi.org/10.1519/00126548-200502000-00002
Clark, K.P., Stearne, D.J., Walts, C.T., and Miller, A.D. The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. J Strength Cond Res, 24(12):3287-95, 2010. https://doi.org/10.1519/JSC.0b013e3181b62c0a
Clark, D.A., Sabick, M.B., Pfeiffer, R.P., Kuhlman, S.M., Knigge, N.A., & Shea, K.G. Influence of towing force magnitude on the kinematics of supramaximal sprinting. J Strength Cond Res, 23:1162-1168, 2009. https://doi.org/10.1519/JSC.0b013e318194df84
Corn, R.J. & Knudson, D. Effect of elastic-cord towing on the kinematics of the acceleration phase of sprinting. J Strength Cond Res, 17(1): 72-75, 2003.
Cronin, J. & Hansen, K.T. Resisted sprint training for the acceleration phase of sprinting. Strength Cond J, 28(4):42-51, 2006. https://doi.org/10.1519/00126548-200608000-00006
Duthie G.M., Pyne, D.B., March D.J. & Hooper, S.L. Sprint patterns in rugby union players during competition. J Strength Cond Res, 20:208-214, 2006.
Farthing, J. P., & Chilibeck, P. D. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J of Appl Physiol, 89, 578-586, 2003. https://doi.org/10.1007/s00421-003-0842-2
Flanagan, E, P., & Comyns, T. M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J, 30, 32-38, 2008. https://doi.org/10.1519/SSC.0b013e318187e25b
Harrison, A.J. and Bourke, G. The effect of resisted sprint training on speed and strength performance in male rugby players. J Strength Cond Res, 23: 275–283, 2009. https://doi.org/10.1519/JSC.0b013e318196b81f
Hauschildt, M.D. Integrating high-speed treadmills into a traditional strength and conditioning program for speed and power sports. Strength Cond J, 32, 21-32, 2010. https://doi.org/10.1519/SSC.0b013e3181caddd9
Hrysomallis, C. The effectiveness of resisted movement training on sprinting and jumping performance. J Strength Cond Res, 26(1):299-306, 2012. https://doi.org/10.1519/JSC.0b013e3182185186
Hunter, J.P., Marshall, R.N. & McNair, P.J. Relationship between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech, 21(1):31-43, 2005. https://doi.org/10.1123/jab.21.1.31
Jakalski, K. Parachutes, tubing, and towing. Sprints and Relays, 4:20-26, 2000.
Jakalski, K. Contemporary research and sprinting: Reconsidering the conceptual paradigm of running mechanics. Track and Field Coaches Review, 75(1):21-22, 2002.
Kivi, D.M.R., & Alexander, M.J.L. A kinematic comparison of the running A and B drills with sprinting. Track Coach, 150:4782-4783, 2000.
Kristensen, G.O., Tillaar, R., & Ettema, G.J.C. Velocity specificity in early phase sprint training. J Strength Cond Res, 20(4):833-837, 2006.
Krustrup, P., Mohr, M., Ellingsgaard, H. & Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med Sci Sports Exerc, 37:1242-1248, 2005. https://doi.org/10.1249/01.mss.0000170062.73981.94
Kugler, F. & Janshen, L. Body position determines propulsive forces in accelerated running. J Biomech, 43:343-348, 2010. https://doi.org/10.1016/j.jbiomech.2009.07.041
Leblanc, J. S., & Gervais, P.L. (2004). Kinematics of assisted and resisted sprinting as compared to normal free sprinting in trained athletes. International Symposium on Biomechanics in Sports: Vol 22. (pp.536) Edmonton Alberta, Canada: University of Alberta, Sports Biomechanics Lab.
Lockie, R.G., Murphy, A.J., & Spinks, C.D. Effects of resisted sled towing on, sprint kinematics in field-sport athletes. J Strength Cond Res, 17(4):760-767, 2003.
Lockie, R.G., Murphy, A.J., Schultz, A.B., Jeffriess, M.D., & Callaghan, S.J. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J Strength Cond Res, 27(9):2494-2503, 2013. https://doi.org/10.1519/JSC.0b013e31827f5103
McFarlane, B. A basic and advanced technical model for speed. NSCA Journal, 15(5):57-61, 1993.
McFarlane, B. A look inside the biomechanics and dynamics of speed. NSCA Journal, 9(5):35-41, 1987.
Mann, R.A. Moran, G.T. & Dougherty, S.E. Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am J Sports Med, 14:501-510, 1986. https://doi.org/10.1177/036354658601400614
Mann, R.V. A kinetic analysis of sprinting. Med Sci Sports Exerc, 13:325-328, 1981. https://doi.org/10.1249/00005768-198105000-00010
Maulder, P.S., Bradshaw, E.J., & Keogh, J.W. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks. J Strength Cond Res, 22(6):1992-2002, 2008. https://doi.org/10.1519/JSC.0b013e31818746fe
Mayhew, J.L., Houser, J.J., Briney, B.B., Williams, T.B., Piper, F.C., & Brechue, W.F. Comparison between hand and electronic timing of 40-yd dash performance in college football players. J Strength Cond Res, 24(2):447-51, 2010. https://doi.org/10.1519/JSC.0b013e3181c08860
Mero, A., & Komi, P.V. Effects of supramaximal velocity on biomechanical variables in sprinting. Int J Sport Biomech, 1:240-252, 1985. https://doi.org/10.1123/ijsb.1.3.240
McFarlane, B.A. A basic and advanced technical model for speed. NSCA Journal, 15(5):57-61, 1993.
McFarlane, B.A. A look inside the biomechanics and Dynamics of speed. NSCA Journal, 9(5):35-41, 1987.
Moore, A.N., Decker, A.J., Baarts, J.N., Dupont, A.M., Epema, J.S., Reuther, M.C., Houser, J.J., and Mayhew, J.L. Effect of competiveness on forty-yard dash performance in college men and women. J Strength Cond Res, 21(2):385-388, 2007.
Morin, J.B., Edouard, P., & Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc, 43:1680-1688, 2011. https://doi.org/10.1249/MSS.0b013e318216ea37
Paradisis, G.P., & Cooke, C.B. The effects of sprint running training on sloping surfaces. J Strength Cond Res, 20(4):767-777, 2006.
Paulson, S. & Braun, W.A. The influence of parachute-resisted sprinting on mechanics in collegiate track athletes. J Strength Cond Res, 25(6):1680-1685, 2011. https://doi.org/10.1519/JSC.0b013e3181dba3f5
Rimmer, E. & Sleivert, G. Effects of a plyometrics intervention program on sprint performance. J Strength Cond Res, 14(3):295-301, 2000.
Sandwick, C. Pacing machine. Athletic Journal. 47:36-37, 1967.
Santana, C. Maximum running speed: Great marketing, limited application. Strength Cond J, 22:31-32, 2000. https://doi.org/10.1519/00126548-200010000-00009
Spencer, M., Bishop, D., Dawson, B., & Goodman, C. Physiological and metabolic responses of repeated sprint acceleration in athletes. Sport Med, 35:1025-1044, 2005. https://doi.org/10.2165/00007256-200535120-00003
Spinks, C.D., Murphy, A.J., Lockie, R.G., & Spinks, W.L. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J Strength Cond Res, 21(1):77-85, 2007. https://doi.org/10.1519/00124278-200702000-00015
Taskin, H. Evaluating sprinting ability, density of acceleration, and speed dribbling ability of professional soccer players with respect to their positions. J Strength Cond Res, 22: 1481–1486, 2008. https://doi.org/10.1519/JSC.0b013e318181fd90
Vescovi, J.D., Rupf, R., Brown, T.D., & Marques, M.C. Physical performance characteristics of high-level female soccer players 12-21 years of age. Scand J Med Sci Sports, 21(5):670-678, 2011. https://doi.org/10.1111/j.1600-0838.2009.01081.x
Wiemann, K. & Tidow, G. Relative activity of hip and knee extensors in sprinting – implications for training. New Studies Athletic, 10:29-49, 1995.
West, D.J., Cunningham, D.J., Bracken, R.M., Bevan, H.R., Crewther, B.T., Cook, C.J. & Kilduff, L.P. Effects of resisted sprint training on acceleration in professional rugby union players. J Strength Cond Res, 27(4):1014-8, 2013. https://doi.org/10.1519/JSC.0b013e3182606cff
West, T. & Robson, S. Running drills – Are we reaping the benefits? In: Sprints and Relays (5th ed.). J. Jarver, ed. Mountain View, CA: TAFNEWS Press, 2000, pp.64-67.
Weyand, P.G., Sandell, R.F., Prime, D.N. & Bundle, M.W. The biological limits to running speed are imposed from the ground up. J Appl Physiol, 108:950-961, 2010. https://doi.org/10.1152/japplphysiol.00947.2009
Weyand, P.G., Sternlight, D.B., Bellizzi, M.J. & Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol, 89:1991-1999, 2000. https://doi.org/10.1152/jappl.2000.89.5.1991
Zafeiridis, A., Saraslanidis, P., Manou, V., Dipla, K., and Kellis, S. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance. J Sports Med Phys Fitness, 45: 284–290, 2005.
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.