Journal of Human Sport and Exercise

Differences in the performance tests of the fast and slow stretch and shortening cycle among professional, amateur and elite youth soccer players

Michael Keiner, Andre Sander, Klaus Wirth, Hagen Hartmann



The purpose of this study was to establish whether physical attributes can differentiate between professional, amateur and elite youth soccer players; such a distinction could aid in the selection process for youth soccer. Therefore, this investigation evaluated a suspected difference in the performance tests of the slow and fast stretch and the shortening cycle (squat jump [SJ], counter-movement jump [CMJ], and drop jump from varying heights [DJ]) among professional, amateur and elite youth soccer players. Cross-sectional data were collected. The results indicate that higher performance in the SJ and CMJ seem to depend on the level of player because the mean performance of the PRO was 38.7 ± 4.0 cm in the SJ and 41.2 ± 3.8 in the CMJ, which were significantly (p<0.05) different compared with all other groups. In the DJ, there were significant (p<0.05) differences between the professional players (PRO) and lower-level players as well as between the PRO and youth soccer players. The results suggest that jump performance can differentiate between elite, sub-elite, and youth soccer players and highlights the importance of appropriate conditioning for developing strength and power in youth soccer players.


Speed-Strength; Level of play; Soccer players; Talent identification


Arabatzi, F., Kellis, E., & De Villarreal, E. S. S. (2010). Vertical jump biomechanics after plyometric, weight lifting, and combined (weight lifting + plyometric) training. J Strength Cond Res, 24, 2440–2448.

Baker, D. G., & Newton, R. U. (2008). Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res, 22, 153–158.

Bissas, A. I., & Havenentidis, K. (2008). The use of various strength-power tests as predictors of sprint running performance. J Sports Med Phys Fitness, 48, 49–54.

Caldwell, B., & Peters, D. (2009). Seasonal variation in physiological fitness of a semiprofessional soccer team. J Strength Cond Res, 23(5), 1370-1377.

Chan, C. K., Lee, J. W., Fong, D. T., Yung, P. S., & Chan, K. M. (2011). The difference of physical abilities between youth soccer player and professional soccer player: an training implication. J Strength Cond Res, 25, 12.

Cometti, G., Maffiuletti, N. A., Pousson, M., Chatard, J. C., & Maffulli, N. (2001). Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med, 22, 45-51.

Dowson, M., Cronin, J., & Presland, J. (2002). Anthropometric and physiological differences between gender and age groups of New Zealand national soccer players. In W. Spinks, T. Reilly, & A. Murphy (Eds.), Science and Football IV (pp. 63-71). London: Routledge.

Dowson, M. N., Nevill, M. E., Lakomy, H. K., Nevill, A. M., & Hazeldine, R. J. (1998). Modelling the relationship between isokinetic muscle strength and sprint running performance. J Sports Sci, 16, 257–265.

Dunbar, G., & Power, K. (1997). Fitness profiles of english professional and semi-professional soccer players using a battery of field tests. In T. Reilly, J. Bangsbo, & M. Hughes (Eds.), Science and Football III (pp. 27-31). London: Spon Press.

Faigenbaum, A. D., Kraemer, W. J., Blimkie, C. J. R., Jeffreys, I., Micheli, L. J., Nitka, M., & Rowland, T. W. (2009). Youth resistance training: updated position statement paper from the national strength and conditioning Association. J Strength Cond Res, 23, 60–79.

Gabbett, T. J., Jenkins, D. G., & Abernethy, B. (2010). Physiological and anthropometric correlates of tackling ability in YSior elite and subelite rugby league players. J Strength Cond Res, 24, 2989-2995.

Gabbett, T. J., Kelly, J. N., & Sheppard, J. M. (2008). Speed, change of direction speed, and reactive agility of rugby league players. J Strength Cond Res, 22, 174-181.

Gall, F., Carling, C., Williams, M., & Reilly, T. (2010). Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport, 13, 90–95.

Gissis, I., Papadopoulos, C., Kalapotharakos, V. I., Sotiropoulos, A., Komsis, G., & Manolopoulos, E. (2006). Strength and speed characteristics of elite, subelite, and recreational young soccer players. Res Sports Med, 14(3), 205-214.

Hansen, L., Bangsbo, J., Twisk, J., &. Klausen, K. (1999). Development of muscle strength in relation to training level and testosterone in young male soccer players. J Appl Physiol, 87, 1141-1147.

Harris, N. K., Cronin, J. B., Hopkins, W. G., & Hansen, K. T. (2008). Relationship between sprint times and the strength/power outputs of a machine squat jump. J Strength Cond Res, 22, 691–698.

Author et al. (2012).

Hori, N., Newton, R. U., Andrews, W. A., Kawamori, N., McGuigan, M. R., & Nosaka, K. (2008). Does performance of hang power clean differentiate performance of jumping, sprinting and changing of direction. J Strength Cond Res, 22, 412-418.

Hoshikawa, Y., Campeiz, J. M., Shibukawa, K., Chuman, Kl, Iida, T., Muramatsu, M., & Nakajima, Y. (2009). Differences in muscularity of psoas major and thigh muscles in relation to sprint and vertical jump performances between elite young and professional soccer players. In T. Reilly, & F. Korkusuz (Eds.), Science and Football VI (pp. 149-154). Oxon: Routledge.

Kaplan, T., Erkmen, N., & Taskin, H. (2009). The evaluation of the running speed and agility performance in professional and amateur soccer players. J Strength Cond Res, 23(3), 774-778.

Author et al. (2012).

Author et al. (2013).

Author et al. (2014).

Kukolj, M., Ropret, R., Ugarkovic, D., & Jaric, S. (1999). Anthropometric, strength, and power predictors of sprinting performance. J Sports Med Phys Fitness, 39, 120–122.

LaTorre, A., Vernillo, G., Rodigari, A., Maggioni, M., & Merati, G. (2007). Explosive stregth in female 11-on-11 versus 7-on-7 soccer players. Sport Sci Health, 2, 80-84.

Lehance, C., Binet, J., Bury, T., & Croisier, J. (2009). Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand J Med Sci Sports, 19, 243–251.

McBride, J. M., Blow, D., Kirby, T. J., Haines, T. L., Dayne, A. M., & Triplett, N. T. (2009). Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res, 23, 1633–1636.

Meylan, C., McMaster, T., Cronin, J., Mohammad, N. I., Rogers, C., & Deklerk, M. (2009). Single-leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res, 23(4), 1140-1147.

Reilly, T. (2007). Science of training – soccer. London: Routledge.

Reilly, T., Williams, A. M., Nevill, A., & Franks, A. (2000). A multidisciplinary approach to talent identification in soccer. J Sports Sci, 18(9), 695-702.

Requena, B., Gonzalez-Badillo, J. J., DeVillareal, E. S., Ereline, J., Garcia, I., Gapeyeva, H., & Pääsuke, M. (2009). Functional performance, maximal strength and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J Strength Cond Res, 23, 1391-1401.

Ronnestad, B. R., Kvamme, N. H., Sunde, A., & Raastad, T. (2008). Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res, 22, 773-780.

Author et al. (2013).

Shalfawi, S. A. I., Sabbah, A., Kailani, G., Tønnessen, E., & Enoksen, E. (2001). The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach. J Strength Cond Res, 25, 3088–3092.

Silva, J. R., Magalha, J. F., Ascensa, A. A., Oliveira, E. M., Seabra, A. F., & Rebelo, A. N. (2001). Individual match playing time during the season affects fitness-related parameters of male professional soccer players. J Strength Cond Res, 25, 2729–2739.

Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer. J Sports Med, 35, 501-536.

Tricoli, V., Lamas, L., Carnevale, R., & Ugrinowitsch, C. (2005). Short-term effects on lower-body functional power development: weightlifting vs. vertical jump training programs. J Strength Cond Res, 19, 433–437.

Tsimahidis, K., Galazoulas, C., Skoufas, D., Papaiakovou, G., Bassa, E., Patikas, D., & Kotzamanidis, C. (2010). The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players. J Strength Cond Res, 24, 2102-2108.

Tumilty, D. (1993). Physiological characteristics of elite soccer players. Sports Med, 16, 80-96.

Verheijen, R. (1998). Conditioning for soccer. Spring City: Reedswain.

Weiss, L. W., Fry, A. C., Wood, L. E., Relyea, G. E., & Melton, C. (2000). Comparative effects of deep versus shallow squat and leg-press training on vertical jumping ability and related factors. J Strength Cond Res, 14, 241-247.

Williams, C., Oliver, J., & Faulkner, J. (2011). Seasonal monitoring of sprint and jump performance in a soccer youth academy. Int J Sports Physiol Perform, 6, 264-275.

Wong, D. P., & Wong, S. H. S. (2009). Physiological profile of Asian elite youth soccer players. J Strength Cond Res, 23, 1383–1390.

Young, W., McLean, B., & Ardagna, J. (1995). Relationship between strength qualities and sprinting performance. J Sports Med Phys Fitness, 35, 13–19.


Copyright (c) 2015 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.