Exercise and lifestyle predictors of resting heart rate in healthy young adults

Paul Nealen

Abstract

Physical exercise is well-understood to provide significant health benefits, through physiological adaptations induced by the repeated exertion stress exercise imposes on our systems.  Chief among these are cardiovascular adaptations to exercise, including adjustments of cardiac parameters such as stroke volume, heart rate, and maximal cardiac output.  It is commonly assumed that aerobic forms of exercise provide greater cardiovascular benefits than do non-aerobic forms of exercise.  To test this assumption, exercise habits and resting heart rate were examined in a large population of healthy young adults.  90% of subjects reported regular physical exercise, with aerobic exercise constituting 64% of all exercise hours.  Subjects with a history of smoking exhibited higher resting heart rates than those with no smoking history, an effect which was due primarily to a reduction in exercise hours by smokers than due to a smoking habit itself.  While both total exercise amount and aerobic exercise amount were significantly and negatively related to resting heart rate, total exercise amount was a better overall predictor of resting heart rate than was aerobic exercise amount.  All forms of exercise were associated with cardiovascular health, with cardiovascular benefits accruing according to the amount of exercise performed, even in optimally healthy young adults.

Keywords

Exercise; Aerobic; Lifestyle; Resting heart rate

References

Barker, A.L., et al., (2014). Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. Archives of Physical Medicine & Rehabilitation, 95(9), 1776-86. https://doi.org/10.1016/j.apmr.2014.04.005

Carvalho, A., et al., (2014). Physical activity and cognitive function in individuals over 60 years of age: a systematic review. Clinical Interventions In Aging, 9, 661-82.

Charansonney, O.L., L. Vanhees, and A. Cohen-Solal, (2014). Physical activity: from epidemiological evidence to individualized patient management. International Journal of Cardiology, 170(3), 350-7. https://doi.org/10.1016/j.ijcard.2013.11.012

Guiney, H. and L. Machado, (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20(1), 73-86. https://doi.org/10.3758/s13423-012-0345-4

Lee, J.Y., et al., (2014). Impact of cardiac rehabilitation on angiographic outcomes after drug-eluting stents in patients with de novo long coronary artery lesions. American Journal of Cardiology, 113(12), 1977-85. https://doi.org/10.1016/j.amjcard.2014.03.037

Peixoto, T.C., et al., (2015). Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial. Canadian Journal of Cardiology, 31(3), 308-13. https://doi.org/10.1016/j.cjca.2014.11.014

Villella, M. and A. Villella, (2014). Exercise and cardiovascular diseases. Kidney & Blood Pressure Research, 39(2-3), 147-53. https://doi.org/10.1159/000355790

Yang, K.C., Y.T. Tseng, and J.M. Nerbonne, (2012). Exercise training and PI3Kalpha-induced electrical remodeling is independent of cellular hypertrophy and Akt signaling. Journal of Molecular & Cellular Cardiology, 53(4), 532-41. https://doi.org/10.1016/j.yjmcc.2012.07.004

Zingman, L.V., et al., (2011). Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. Journal of Molecular & Cellular Cardiology, 51(1), 72-81. https://doi.org/10.1016/j.yjmcc.2011.03.010

George, K.P., L.A. Wolfe, and G.W. Burggraf, (1991). The 'athletic heart syndrome'. A critical review. Sports Medicine, 11(5), 300-30. https://doi.org/10.2165/00007256-199111050-00003

Saltin, B. and L.B. Rowell, (1980). Functional adaptations to physical activity and inactivity. Federation Proceedings, 39(5), 1506-13.

Goodman, J.M., P.P. Liu, and H.J. Green, (2005). Left ventricular adaptations following short-term endurance training. Journal of Applied Physiology, 98(2), 454-60. https://doi.org/10.1152/japplphysiol.00258.2004

Myers, J., et al., (2002). Effects of exercise training on left ventricular volumes and function in patients with nonischemic cardiomyopathy: application of magnetic resonance myocardial tagging. American Heart Journal, 144(4), 719-25. https://doi.org/10.1016/S0002-8703(02)00148-5

Devereux, G.R., J.D. Wiles, and I.L. Swaine, (2010). Reductions in resting blood pressure after 4 weeks of isometric exercise training. European Journal of Applied Physiology, 109(4), 601-6. https://doi.org/10.1007/s00421-010-1394-x

Mahanonda, N., et al., (2000). Regular exercise and cardiovascular risk factors. Journal of the Medical Association of Thailand, 83 Suppl 2, S153-8.

Pratt, C.M., et al., (1981). Demonstration of training effect during chronic beta-adrenergic blockade in patients with coronary artery disease. Circulation, 64(6), 1125-9. https://doi.org/10.1161/01.CIR.64.6.1125

Stoutenberg, M., et al., (2012). Aerobic training does not alter CRP in apparently healthy, untrained men. Journal of Sports Medicine & Physical Fitness, 52(1), 53-62.

Cornelissen, V.A., R. Buys, and N.A. Smart, (2013). Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. Journal of Hypertension, 31(4), 639-48. https://doi.org/10.1097/HJH.0b013e32835ca964

Millar, P.J., et al., (2014). Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Medicine, 44(3), 345-56. https://doi.org/10.1007/s40279-013-0118-x

Pal, S., S. Radavelli-Bagatini, and S. Ho, (2013). Potential benefits of exercise on blood pressure and vascular function. Journal of the American Society of Hypertension, 7(6), 494-506. https://doi.org/10.1016/j.jash.2013.07.004

Bohm, M., et al., (2015). Resting heart rate: risk indicator and emerging risk factor in cardiovascular disease. American Journal of Medicine, 128(3), 219-28. https://doi.org/10.1016/j.amjmed.2014.09.016

Floyd, J.S., et al., (2015). Variation in resting heart rate over 4 years and the risks of myocardial infarction and death among older adults. Heart, 101(2), 132-8. https://doi.org/10.1136/heartjnl-2014-306046

Jiang, X., et al., (2015). Metabolic syndrome is associated with and predicted by resting heart rate: a cross-sectional and longitudinal study. Heart, 101(1), 44-9. https://doi.org/10.1136/heartjnl-2014-305685

Bloomer, R.J., et al., (2005). Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. Journal of Strength & Conditioning Research, 19(2), 276-85.

Farrell, P.A., et al., (1982). A comparison of plasma cholesterol, triglycerides, and high density lipoprotein-cholesterol in speed skaters, weightlifters and non-athletes. European Journal of Applied Physiology & Occupational Physiology, 48(1), 77-82. https://doi.org/10.1007/BF00421167

Kielar, R.A., et al., (1975). Standardized aerobic and anaerobic exercise: differential effects on intraocular tension, blood pH, and lactate. Investigative Ophthalmology, 14(10), 782-5.

Kindermann, W., et al., (1982). Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. European Journal of Applied Physiology & Occupational Physiology, 49(3), 389-99. https://doi.org/10.1007/BF00441300

Schwarz, L. and W. Kindermann, (1990). Beta-endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. European Journal of Applied Physiology & Occupational Physiology, 61(3-4), 165-71. https://doi.org/10.1007/BF00357593

Schwarz, L. and W. Kindermann, (1992). Changes in beta-endorphin levels in response to aerobic and anaerobic exercise. Sports Medicine, 13(1), 25-36. https://doi.org/10.2165/00007256-199213010-00003

Hackney, A.C., M.C. Premo, and R.G. McMurray, (1995). Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. Journal of Sports Sciences, 13(4), 305-11. https://doi.org/10.1080/02640419508732244

Vanhelder, W.P., R.C. Goode, and M.W. (1984). Radomski, Effect of anaerobic and aerobic exercise of equal duration and work expenditure on plasma growth hormone levels. European Journal of Applied Physiology & Occupational Physiology, 52(3), 255-7. https://doi.org/10.1007/BF01015205

Coulson, N.S., C. Eiser, and J.R. Eiser, (1997). Diet, smoking and exercise: interrelationships between adolescent health behaviours. Child: Care, Health and Development, 23(3), 207-216. https://doi.org/10.1111/j.1365-2214.1997.tb00964.x

Song, Y., (2011). Time Preference and Time Use: Do Smokers Exercise Less? Labour, 25(3), 350-369. https://doi.org/10.1111/j.1467-9914.2011.00523.x

Agelink, M.W., et al., (2001). Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clinical Autonomic Research, 11(2), 99-108. https://doi.org/10.1007/BF02322053

Antelmi, I., et al., (2004). Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. The American Journal of Cardiology, 93(3), 381-385. https://doi.org/10.1016/j.amjcard.2003.09.065

Haskell, W.L., et al., (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise, 39(8), 1423-34. https://doi.org/10.1249/mss.0b013e3180616b27

Hills, A.P., D.R. Dengel, and D.R. Lubans, (2015). Supporting public health priorities: recommendations for physical education and physical activity promotion in schools. Progress in Cardiovascular Diseases, 57(4), 368-74. https://doi.org/10.1016/j.pcad.2014.09.010

Pediatrics, A.A.o., (2000). Physical fitness and activity in schools. Pediatrics, 105(5), 1156-7. https://doi.org/10.1542/peds.105.5.1156

Powell, K.E. and R.S. Paffenbarger, Jr., (1985). Workshop on Epidemiologic and Public Health Aspects of Physical Activity and Exercise: a summary. Public Health Reports, 100(2), 118-26.

Prevention, C.f.D.C.a., (1997). Guidelines for school and community programs to promote lifelong physical activity among young people. Morbidity & Mortality Weekly Report, 46(RR-6), 1-36.

Sparling, P.B., et al., (2015). Recommendations for physical activity in older adults. BMJ, 350, 100. https://doi.org/10.1136/bmj.h100

Slentz, C.A., et al., (2004). Effects of the amount of exercise on body weight, body composition, and measures of central obesity: Strride—a randomized controlled study. Archives of Internal Medicine, 164(1), 31-39. https://doi.org/10.1001/archinte.164.1.31

Slentz, C.A., et al., (2005). Inactivity, exercise, and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount. Vol. 99, 1613-1618.

Slentz, C.A., J.A. Houmard, and W.E. Kraus, (2009). Exercise, Abdominal Obesity, Skeletal Muscle, and Metabolic Risk: Evidence for a Dose Response. Obesity, 17(S3), S27-S33. https://doi.org/10.1038/oby.2009.385

Johnson, J.L., et al., (2007). Exercise Training Amount and Intensity Effects on Metabolic Syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). The American Journal of Cardiology, 100(12), 1759-1766. https://doi.org/10.1016/j.amjcard.2007.07.027

Dunn, A.L., et al., (2005). Exercise treatment for depression: Efficacy and dose response. American Journal of Preventive Medicine, 28(1), 1-8. https://doi.org/10.1016/j.amepre.2004.09.003

Kraus, W.E., et al., (2002). Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. New England Journal of Medicine, 347(19), 1483-1492. https://doi.org/10.1056/NEJMoa020194

Ishikawa-Takata, K., T. Ohta, and H. Tanaka, (2003). How much exercise is required to reduce blood pressure in essential hypertensives: a dose–response study. American Journal of Hypertension, 16(8), 629-633. https://doi.org/10.1016/S0895-7061(03)00895-1




DOI: https://doi.org/10.14198/jhse.2016.113.02