The importance of heart rate monitors in controlling intensity during training and competition in junior biathlon athletes


  • Kjetil Laurits Høydal Volda University College, Norway
  • Ivar Nord Volda University College, Norway



Training intensity, Intensity regulation, Lactate threshold


Purpose: This study examines whether junior athletes successfully regulate training intensity using subjective feeling, or whether heart rate monitor is necessary to regulate intensity. Methods: Nine active junior biathlon athletes, men (n = 6) and women (n = 3) between 16 and 19 years old participated in the study. All participants completed two training sessions at lactate threshold, one session regulated by subjective feeling, blinded for heart rate and one session regulated by heart rate. Results: The participants start the first ten minutes of the training session at lower intensity when blinded, compared to using HR monitors (ES, 0.98; P = 0.05). Registrations at 20 and 30 minutes shows that participants in the non-blinded session gradually tune in to the right intensity, and the differences get smaller and non-significant. Mean speed (ES, 0.61; P = 0.04) and distance covered (ES, 0.63; P = 0.04) during the training session is larger in the heart rate controlled session compared to subjective feeling. Conclusions: Using heart rate monitors provide better control of exercise intensity in young biathletes than subjective feeling. Using subjective feeling underestimate intensity at lactate threshold, and results in significantly, lower distance covered


Download data is not yet available.


Bassett, D.R., Jr., & Howley, E.T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc., 32(1), 70-84.

Borg, G.A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc., 14(5), 377-81.

Coote, J.H. (2010). Recovery of heart rate following intense dynamic exercise. Exp. Physiol. 95(3), 431-40.

Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. New York: Routledge.

Ekkekakis, P. (2009). Let them roam free? Physiological and psychological evidence for the potential of self-selected exercise intensity in public health. Sports Med., 39(10), 857-88.

Jin, H., Jiang, Y., Wei, Q., Chen, L., & Ma, G. (2013). Effects of aerobic cycling training on cardiovascular fitness and heart rate recovery in patients with chronic stroke. NeuroRehabilitation, 32(2), 327–335.

Fabre, N., Mourot, L., Zerbini, L., Pellegrini, B., Bortolan, L., & Schena, F. (2013). A novel approach for lactate threshold assessment based on rating of perceived exertion. Int. J. Sports Physiol. Perform. 8(3), 263-70.

Feriche, B., Chicharro, J.L., Vaquero, A.F., Perez, M., & Lucia, A. (1998). The use of a fixed value of RPE during a ramp protocol. Comparison with the ventilatory threshold. J. Sports Med. Phys. Fitness 38(1), 35-8.

Foster, C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc., 30(7), 1164-8.

Foster, C., Florhaug, J.A., Franklin, J., Gottschall, L., Hrovatin, L.A., Parker, S., Doleshal, P., & Dodge, C. (2001a). A new approach to monitoring exercise training. J. Strength Cond. Res. 15(1), 109-15.

Foster, C., Heimann, M.K., Esten, P.L., Brice, G., & Porcari, J.P. (2001b). Differences in perceptions of training by coaches and athletes. The South African journal of medical sciences 8, 3-7.

Grant, S., Craig, I., Wilson, J., & Aitchison, T. (1997). The relationship between 3 km running performance and selected physiological variables. J. Sports Sci., 15(4), 403-10.

Helgerud, J., Hoydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R. et al. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc., 39(4), 665-71.

Helgerud, J., Ingjer, F., & Stromme, S.B. (1990). Sex differences in performance-matched marathon runners. Eur. J. Appl. Physiol. Occup. Physiol., 61(5-6), 433-9.

Larsson, P.U., Wadell, K.M., Jakobsson, E.J., Burlin, L.U., & Henriksson-Larsen, K.B. (2004). Validation of the MetaMax II portable metabolic measurement system. Int. J. Sports Med. 25(2), 115-23.

Laursen, P.B. (2010). Training for intense exercise performance: high-intensity or high-volume training? Scand. J. Med. Sci. Sports., 20 Suppl 2, 1-10.

McLaughlin, J.E., Howley, E.T., Bassett, D.R., Jr., Thompson, D.L., & Fitzhugh, E.C. (2010). Test of the classic model for predicting endurance running performance. Med. Sci. Sports Exerc., 42(5), 991-7.

Norwegian Biathlon Federation. Utviklingstrapp skiskyting [Internet]. Norwegian Biathlon federation Available from:

Rose, E.A., & Parfitt, G. (2010). Pleasant for some and unpleasant for others: a protocol analysis of the cognitive factors that influence affective responses to exercise. Int. J. Behav. Nutr. Phys. Act. 7:15.

Seiler, K.S., & Kjerland, G.O. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution? Scand. J. Med. Sci. Sports 16(1), 49-56.

Yoshida, T. (1986). Effect of dietary modifications on anaerobic threshold. Sports Med., 3(1), 4-9.

Yoshida, T., Udo, M., Iwai, K., & Yamaguchi, T. (1993). Physiological characteristics related to endurance running performance in female distance runners. J. Sports Sci., 11(1), 57-62.


Statistics RUA



How to Cite

Høydal, K. L., & Nord, I. (2017). The importance of heart rate monitors in controlling intensity during training and competition in junior biathlon athletes. Journal of Human Sport and Exercise, 12(2), 358–366.



Sport Medicine, Nutrition & Health