Evaluation of isometric force production in L-sit cross in still rings among elite male artistic gymnasts

Authors

  • Benjamin Bango Polytechnic University of Madrid, Spain
  • Archit Navandar Polytechnic University of Madrid, Spain
  • Ignacio Grande Polytechnic University of Madrid, Spain
  • Manuel Sillero-Quintana Polytechnic University of Madrid, Spain

DOI:

https://doi.org/10.14198/jhse.2017.122.02

Keywords:

Gymnastics, Biomechanics, Isometric force, Rings, L-Sit cross

Abstract

The aim of the study was to obtain information about the proximity to perform the L-Sit Cross (LSC) element of strength hold in still rings. The production of isometric strength in the LSC in still rings in a group of twenty elite gymnasts was evaluated using a force platform (FP). The participants, who were seated on a FP, exerted a force on the rings to reach the LSC. The vertical force component extracted from the F / t curve (20 Hz) was analyzed, which reflected the weight released when a force was applied in a period of maintenance of the maximum isometric force. The normalized maximum and mean isometric forces were extracted. Results showed large differences (p<0.001, Cohen’s d = 1.6) between performer (P) and non-performer (NP) gymnasts of this element. P gymnasts produced a greater isometric strength level owing to their greater experience in training this element. This information can be useful to coaches in order to determine how close a gymnast is to performing the LSC. 

Downloads

Download data is not yet available.

References

Araújo, C. (2004). Manual de ayudas en gimnasia (Bicolor).

Arkaev, L., & Suchilin, N. G. (2004). How to create champions: the theory and methodology of training top-class gymnasts.

Badillo, J. J. G., & Serna, J. R. (2002). Bases de la programación del entrenamiento de fuerza (Vol. 308): Inde.

Bango, B., Sillero Quintana, M., & Grande Rodriguez, I. (2013). New tool to assess the force production in the swallow. Science of Gymnastics Journal, 5(3), 47-58.

Bernasconi, S., Tordi, N., Parratte, B., Rouillon, J. D., & Monnier, G. (2004). Surface electromyography of nine shoulder muscles in two iron cross conditions in gymnastics. J Sport Med Phys Fit, 44(3), 240.

Bernasconi, S. M., Tordi, N. R., Parratte, B. M., Rouillon, J.-D. R., & Monnier, G. G. (2006). Effects of two devices on the surface electromyography responses of eleven shoulder muscles during Azarian in gymnastics. Journal of Strength and Conditioning Research, 20(1), 53–57. https://doi.org/10.1519/R-16174.1

Bernasconi, S., Tordi, N., Parratte, B., Rouillon, J. D., & Monnier, G. (2009). Can shoulder muscle coordination during the support scale at ring height be replicated during training exercises in gymnastics? Journal of Strength and Conditioning Research, 23(8), 2381-2388. https://doi.org/10.1519/JSC.0b013e3181bac69f

Campos, M., Sousa, F., & Lebre, E. (2011). The swallow element and muscular activations. Paper presented at the ISBS Conference Proceedings.

Carrara, P., & Mochizuki, L. (2009). Análise biomecânica do crucifixo nas argolas. Revista Brasileira de Ciência e Movimento, 16(2), 83-89.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155

Dunlavy, J. K., Sands, W. A., McNeal, J. R., Stone, M. H., Smith, S. L., Jemni, M., & Haff, G. G. (2007). Strength performance assessment in a simulated men's gymnastics still rings cross. Journal of Sports Science & Medicine, 6(1), 93.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. https://doi.org/10.3758/BF03193146

Fédération Internationale de Gymnastique. (2013). Código de Puntuación de Gimnasia Artística Masculina. Lausane: FIG.

Fédération Internationale de Gymnastique. (2017). Código de Puntuación de Gimnasia Artística Masculina. Lausane: FIG.

García Carretero, M. (2003). Las anillas: un aparato de la gimnasia artística masculina. (PhD), Universidad Politécnica de Madrid, Madrid.

Gorosito, M. A. (2013). Relative strength requirement for Swallow element proper execution: A predictive test. Science of Gymnastics Journal, 5(3), 59-67.

Hübner, K., & Schärer, C. (2015). Relationship between swallow, support scale and iron cross on rings and their specific preconditioning strengthening exercises. Science of Gymnastics Journal, 7(3).

León-Prados, J. A., Gómez-Píriz, P. T., & González-Badillo, J. J. (2011). Relación entre test físicos específicos y rendimiento en gimnastas de élite.(Relationships between specific physical test and competitive performance in high-level gymnasts). RICYDE. Revista Internacional de Ciencias del Deporte, 7(22), 58-71. https://doi.org/10.5232/ricyde

Leon Guzman, F. M. (1999). La demostración de los errores técnicos como medio para la mejora del proceso de ense-anza aprendizaje de la gimnasia artística. (PhD), Universidad de Extremadura.

Schärer, C., & Hübner, K. (2016). Prediction of maximum resistance accuracy at five and seven seconds holding times from a three seconds static maximum strength test of the elements iron cross, support scale and swallow on rings using the devices counterweight or additional weight. Science of Gymnastics Journal, 8(2).

Smolevskiy, V., & Gaverdovskiy, I. (1996). Tratado general de gimnasia artística deportiva: Paidotribo.

Zatsiorsky, V. M. (1989). Metrología deportiva: Planeta.

Statistics

Statistics RUA

Published

2017-07-07

How to Cite

Bango, B., Navandar, A., Grande, I., & Sillero-Quintana, M. (2017). Evaluation of isometric force production in L-sit cross in still rings among elite male artistic gymnasts. Journal of Human Sport and Exercise, 12(2), 257–266. https://doi.org/10.14198/jhse.2017.122.02

Issue

Section

Performance Analysis of Sport