Validation of a force platform clinical for the assessment of vertical jump height
DOI:
https://doi.org/10.14198/jhse.2017.122.13Keywords:
Biomechanics, Systems analysis, Athletic performance, Physical therapy, Time and motion studiesAbstract
Objective: the purpose of the present study was to analyze the concurrent validity and reliability of a force platform clinical COBS Feedback® for the estimation of the height of vertical jumps. Design: a cross-sectional correlational and comparative study. Setting: University Human Movement and Physiotherapy Laboratory. Participants: healthy university students (14 female and 13 male) aged between 18 and 25 years old (mean = 20.074 ±1.542). Main Outcome Measures: vertical jump heights, technical error and grade of agreement between methods of measurement. Results: after the 27 subjects performed a total of 135 vertical jumps on COBS Feedback®platform while simultaneously being recorded with a high-speed camera-based method, the intraclass correlation coefficient showed an almost perfect concordance between the two methods (ICC = 0.916, CI95%= 0.882 to 0.940, p<0.001). The technical error of the COBS Feedback® against HSC-Kinovea video analysis was at 0.310±0.223m, being higher in males than in females (t= -2.822, CI95%: -0.376 to -0.574, p=0.001). Conclusions: the COBS Feedback® method provided a valid measurement of the flight times for estimate the vertical jump height as a number of well-known tests and devices.
Downloads
References
Amonette, W.E., Brown, L.E., De Witt, J.K., Dupler, T.L., Tran, T.T., Tufano, J.J. & Spiering, B.A. (2012). Peak vertical jump power estimations in youths and young adults. J Strength Cond Res, 26(7), 1749-1755. https://doi.org/10.1519/JSC.0b013e3182576f1e
Aragón-Vargas, L.F. (1996). Comparison of four methods for measuring vertical jump (Spanish version). Revista Educación, 20(1), 33-40.
Balsalobre-Fernández, C., Glaister, M. & Lockey, R.A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci, 33(15), 1574-1579. https://doi.org/10.1080/02640414.2014.996184
Balsalobre-Fernández, C., Tejero-González, C.M., del Campo-Vecino, J. & Bavaresco, N. (2014). The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J Strength Cond Res, 28(2): 528-533. https://doi.org/10.1519/JSC.0b013e318299a52e
Bishop, D. & Middleton, G. (2013). Effects of static stretching following a dynamic warm-up on speed, agility and power. J. Hum. Sport Exerc, 8(2), 391-400. https://doi.org/10.4100/jhse.2012.82.07
Bui, H.T., Farinas, M.I., Fortin, A.M., Comtois, A.S. & Leone, M. (2015). Comparison and analysis of three different methods to evaluate vertical jump height. Clin Physiol Funct Imagin, 35(3), 203-209. https://doi.org/10.1111/cpf.12148
Casartelli, N., Muller, R. & Maffiuletti, N.A. (2010). Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J Strength Cond Res, 24, 3186–3193. https://doi.org/10.1519/JSC.0b013e3181d8595c
Castagna, C., Ganzetti, M., Ditroilo, M., Giovannelli, M., Rocchetti, A. & Manzi, V. (2013) Concurrent validity of vertical jump performance assessment systems. J Strength Cond Res, 27(3), 761-768. https://doi.org/10.1519/JSC.0b013e31825dbcc5
Dias, J.A., Dal Pupo, J.D., Reis, D.C., Borges, L., Santos, S.G., Moro, A.R.P. & Borges, N.G. Jr. (2011). Validity of two methods for estimation of vertical jump height. J Strength Cond Res, 25: 2034–2039. https://doi.org/10.1519/JSC.0b013e3181e73f6e
Earp, J.E., Kraemer, W.J., Newton, R.U., Comstock, B.A., Fragala, M. S., Dunn-Lewis, C…….. & Maresh, C.H. (2010). Lower-body muscle structure and its role in jump performance during squat, countermovement, and depth drop jumps. J Strength Cond Res, 24(3), 722-729. https://doi.org/10.1519/JSC.0b013e3181d32c04
Edouard, P., Morin, J.B. & Samozino, P. (2015). No change in maximal lower extremity power output was induced by a decathlon. Sci Sports, 30, e73—83. https://doi.org/10.1016/j.scispo.2014.02.005
Farias, D.L., Teixeira, T.G., Madrid, B., Pinho, D., Boullosa, D.A. & Prestes, J. (2013). Reliability of vertical jump performance evaluated with contact mat in elderly women. Clin Physiol Funct Imagin, 33, 288–292. https://doi.org/10.1111/cpf.12026
Girard, O., Racinais, S.B., Kelly, L., Millet, G.G. & Brocherie, F. (2011). Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol, 111, 2547–2555. https://doi.org/10.1007/s00421-011-1884-5
Glatthorn, J.F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F.M. & Maffiuletti, N.A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res, 25, 556–560. https://doi.org/10.1519/JSC.0b013e3181ccb18d
Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med, 44,139—147. https://doi.org/10.1007/s40279-014-0253-z
Huurnink, A., Fransz, D. P., Kingma, I. & van Dieën, J. H. (2013). Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech, 46(7), 1392-1395. https://doi.org/10.1016/j.jbiomech.2013.02.018
Ismail, S.I., Osman, E., Sulaiman, N. & Adnan, R. (2016). Comparison between Marker-less Kinect-based and Conventional 2D Motion Analysis System on Vertical Jump Kinematic Properties Measured from Sagittal View. In Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS) (pp. 11-17). Springer International Publishing. https://doi.org/10.1007/978-3-319-24560-7_2
Instruction measurements manual. (1995). User Manual Balance Cobs mtd. Versión 5.0
Karlsson, A. & Frykberg, G. (2000). Correlations between force plate measures for assessment of balance. Clin Biomech, 15(5), 365-369. https://doi.org/10.1016/S0268-0033(99)00096-0
Kamandulis, S., Venckunas, T., Snieckus, A., Nickus, E., Stanislovaitiene, J. & Skurvydas, A. (2016). Changes of vertical jump height in response to acute and repetitive fatiguing conditions. Sci Sports, 31(6), e163-e171. https://doi.org/10.1016/j.scispo.2015.11.004
Kibele, A. (1998). Possibilities and limitations in the biomechanical analysis of countermovement jumps: a methodological study. J Appl Biomech, 14,105-117. https://doi.org/10.1123/jab.14.1.105
Kruse. N. T., Barr, M. W., Gilders, R. M., Kushnick, M. R. & Rana, S. R. (2015). Effect of different stretching strategies on the kinetics of vertical jumping in female volleyball athletes. J Sport Health Sci, 4(4), 364-370. https://doi.org/10.1016/j.jshs.2014.06.003
Kurokawa, S., Fukunaga, T. & Fukashiro, S. (2001). Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol, 90(4): 1349-1358. https://doi.org/10.1152/jappl.2001.90.4.1349
Manual of hardware and software installation COBS. (1995). User Manual Balance Cobs mtd. Versión 5.0.
Physiomed. (2016). Product catalog. Retrieved from http://www.physiomed.de/index.php?id=488
Twist, C., Highton, J. (2013). Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform, 8, 467—474. https://doi.org/10.1123/ijspp.8.5.467
Ostojić, S.M., Stojanović, M. & Ahmetović, Z. (2010). Vertical jump as a tool in assessment of muscular power and anaerobic performance. Med Pregl, 63(5-6), 371-375. https://doi.org/10.2298/MPNS1006371O
Rouis, M., Attiogbé, E., Vandewalle, H., Jaafar, H., Noakes, T.D. & Driss, T. (2015). Relationship between vertical jump and maximal power output of legs and arms: effects of ethnicity and sport. Scand J Med Sci Sports, 25(2), e197-e207. https://doi.org/10.1111/sms.12284
Sargent, D.A. (1921). Physical test of man. Am Phys Educ Rev, 26(4), 188-194.
Whitmer, T.D., Fry, A.C., Forsythe, C.M., Andre, M.J., Lane, M.T., Hudy, A. & Honnold, D.E. (2015). Accuracy of a vertical jump contact mat for determining jump height and flight time. J Strength Cond Res, 29(4), 877-881. https://doi.org/10.1519/JSC.0000000000000542
Ziv, G. & Lidor, R. (2010a). Vertical jump in female and male basketball players—A review of observational and experimental studies. J Sci Med Sport, 13(3), 332-339. https://doi.org/10.1016/j.jsams.2009.02.009
Ziv, G. & Lidor, R. (2010b). Vertical jump in female and male volleyball players: a review of observational and experimental studies. Scand J Med Sci Sports, 20(4), 556-567. https://doi.org/10.1111/j.1600-0838.2009.01083.x
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.