Validation of a force platform clinical for the assessment of vertical jump height

Authors

  • Arián Ramón Aladro Gonzalvo Pontifical Catholic University of Ecuador, Ecuador http://orcid.org/0000-0002-8072-2016
  • Danilo Esparza Yánez University of las Américas Pontifical Catholic University of Ecuador, Ecuador
  • José Miguel Tricás Moreno University of Zaragoza, Spain
  • María Orosia Lucha López University of Zaragoza, Spain

DOI:

https://doi.org/10.14198/jhse.2017.122.13

Keywords:

Biomechanics, Systems analysis, Athletic performance, Physical therapy, Time and motion studies

Abstract

Objective: the purpose of the present study was to analyze the concurrent validity and reliability of a force platform clinical COBS Feedback® for the estimation of the height of vertical jumps. Design: a cross-sectional correlational and comparative study. Setting: University Human Movement and Physiotherapy Laboratory. Participants: healthy university students (14 female and 13 male) aged between 18 and 25 years old (mean = 20.074 ±1.542). Main Outcome Measures: vertical jump heights, technical error and grade of agreement between methods of measurement. Results: after the 27 subjects performed a total of 135 vertical jumps on COBS Feedback®platform while simultaneously being recorded with a high-speed camera-based method, the intraclass correlation coefficient showed an almost perfect concordance between the two methods (ICC = 0.916, CI95%= 0.882 to 0.940, p<0.001). The technical error of the COBS Feedback® against HSC-Kinovea video analysis was at 0.310±0.223m, being higher in males than in females (t= -2.822, CI95%: -0.376 to -0.574, p=0.001). Conclusions: the COBS Feedback® method provided a valid measurement of the flight times for estimate the vertical jump height as a number of well-known tests and devices. 

Downloads

Download data is not yet available.

References

Amonette, W.E., Brown, L.E., De Witt, J.K., Dupler, T.L., Tran, T.T., Tufano, J.J. & Spiering, B.A. (2012). Peak vertical jump power estimations in youths and young adults. J Strength Cond Res, 26(7), 1749-1755. https://doi.org/10.1519/JSC.0b013e3182576f1e

Aragón-Vargas, L.F. (1996). Comparison of four methods for measuring vertical jump (Spanish version). Revista Educación, 20(1), 33-40.

Balsalobre-Fernández, C., Glaister, M. & Lockey, R.A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci, 33(15), 1574-1579. https://doi.org/10.1080/02640414.2014.996184

Balsalobre-Fernández, C., Tejero-González, C.M., del Campo-Vecino, J. & Bavaresco, N. (2014). The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J Strength Cond Res, 28(2): 528-533. https://doi.org/10.1519/JSC.0b013e318299a52e

Bishop, D. & Middleton, G. (2013). Effects of static stretching following a dynamic warm-up on speed, agility and power. J. Hum. Sport Exerc, 8(2), 391-400. https://doi.org/10.4100/jhse.2012.82.07

Bui, H.T., Farinas, M.I., Fortin, A.M., Comtois, A.S. & Leone, M. (2015). Comparison and analysis of three different methods to evaluate vertical jump height. Clin Physiol Funct Imagin, 35(3), 203-209. https://doi.org/10.1111/cpf.12148

Casartelli, N., Muller, R. & Maffiuletti, N.A. (2010). Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J Strength Cond Res, 24, 3186–3193. https://doi.org/10.1519/JSC.0b013e3181d8595c

Castagna, C., Ganzetti, M., Ditroilo, M., Giovannelli, M., Rocchetti, A. & Manzi, V. (2013) Concurrent validity of vertical jump performance assessment systems. J Strength Cond Res, 27(3), 761-768. https://doi.org/10.1519/JSC.0b013e31825dbcc5

Dias, J.A., Dal Pupo, J.D., Reis, D.C., Borges, L., Santos, S.G., Moro, A.R.P. & Borges, N.G. Jr. (2011). Validity of two methods for estimation of vertical jump height. J Strength Cond Res, 25: 2034–2039. https://doi.org/10.1519/JSC.0b013e3181e73f6e

Earp, J.E., Kraemer, W.J., Newton, R.U., Comstock, B.A., Fragala, M. S., Dunn-Lewis, C…….. & Maresh, C.H. (2010). Lower-body muscle structure and its role in jump performance during squat, countermovement, and depth drop jumps. J Strength Cond Res, 24(3), 722-729. https://doi.org/10.1519/JSC.0b013e3181d32c04

Edouard, P., Morin, J.B. & Samozino, P. (2015). No change in maximal lower extremity power output was induced by a decathlon. Sci Sports, 30, e73—83. https://doi.org/10.1016/j.scispo.2014.02.005

Farias, D.L., Teixeira, T.G., Madrid, B., Pinho, D., Boullosa, D.A. & Prestes, J. (2013). Reliability of vertical jump performance evaluated with contact mat in elderly women. Clin Physiol Funct Imagin, 33, 288–292. https://doi.org/10.1111/cpf.12026

Girard, O., Racinais, S.B., Kelly, L., Millet, G.G. & Brocherie, F. (2011). Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol, 111, 2547–2555. https://doi.org/10.1007/s00421-011-1884-5

Glatthorn, J.F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F.M. & Maffiuletti, N.A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res, 25, 556–560. https://doi.org/10.1519/JSC.0b013e3181ccb18d

Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med, 44,139—147. https://doi.org/10.1007/s40279-014-0253-z

Huurnink, A., Fransz, D. P., Kingma, I. & van Dieën, J. H. (2013). Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech, 46(7), 1392-1395. https://doi.org/10.1016/j.jbiomech.2013.02.018

Ismail, S.I., Osman, E., Sulaiman, N. & Adnan, R. (2016). Comparison between Marker-less Kinect-based and Conventional 2D Motion Analysis System on Vertical Jump Kinematic Properties Measured from Sagittal View. In Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS) (pp. 11-17). Springer International Publishing. https://doi.org/10.1007/978-3-319-24560-7_2

Instruction measurements manual. (1995). User Manual Balance Cobs mtd. Versión 5.0

Karlsson, A. & Frykberg, G. (2000). Correlations between force plate measures for assessment of balance. Clin Biomech, 15(5), 365-369. https://doi.org/10.1016/S0268-0033(99)00096-0

Kamandulis, S., Venckunas, T., Snieckus, A., Nickus, E., Stanislovaitiene, J. & Skurvydas, A. (2016). Changes of vertical jump height in response to acute and repetitive fatiguing conditions. Sci Sports, 31(6), e163-e171. https://doi.org/10.1016/j.scispo.2015.11.004

Kibele, A. (1998). Possibilities and limitations in the biomechanical analysis of countermovement jumps: a methodological study. J Appl Biomech, 14,105-117. https://doi.org/10.1123/jab.14.1.105

Kruse. N. T., Barr, M. W., Gilders, R. M., Kushnick, M. R. & Rana, S. R. (2015). Effect of different stretching strategies on the kinetics of vertical jumping in female volleyball athletes. J Sport Health Sci, 4(4), 364-370. https://doi.org/10.1016/j.jshs.2014.06.003

Kurokawa, S., Fukunaga, T. & Fukashiro, S. (2001). Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol, 90(4): 1349-1358. https://doi.org/10.1152/jappl.2001.90.4.1349

Manual of hardware and software installation COBS. (1995). User Manual Balance Cobs mtd. Versión 5.0.

Physiomed. (2016). Product catalog. Retrieved from http://www.physiomed.de/index.php?id=488

Twist, C., Highton, J. (2013). Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform, 8, 467—474. https://doi.org/10.1123/ijspp.8.5.467

Ostojić, S.M., Stojanović, M. & Ahmetović, Z. (2010). Vertical jump as a tool in assessment of muscular power and anaerobic performance. Med Pregl, 63(5-6), 371-375. https://doi.org/10.2298/MPNS1006371O

Rouis, M., Attiogbé, E., Vandewalle, H., Jaafar, H., Noakes, T.D. & Driss, T. (2015). Relationship between vertical jump and maximal power output of legs and arms: effects of ethnicity and sport. Scand J Med Sci Sports, 25(2), e197-e207. https://doi.org/10.1111/sms.12284

Sargent, D.A. (1921). Physical test of man. Am Phys Educ Rev, 26(4), 188-194.

Whitmer, T.D., Fry, A.C., Forsythe, C.M., Andre, M.J., Lane, M.T., Hudy, A. & Honnold, D.E. (2015). Accuracy of a vertical jump contact mat for determining jump height and flight time. J Strength Cond Res, 29(4), 877-881. https://doi.org/10.1519/JSC.0000000000000542

Ziv, G. & Lidor, R. (2010a). Vertical jump in female and male basketball players—A review of observational and experimental studies. J Sci Med Sport, 13(3), 332-339. https://doi.org/10.1016/j.jsams.2009.02.009

Ziv, G. & Lidor, R. (2010b). Vertical jump in female and male volleyball players: a review of observational and experimental studies. Scand J Med Sci Sports, 20(4), 556-567. https://doi.org/10.1111/j.1600-0838.2009.01083.x

Downloads

Statistics

Statistics RUA

Published

2017-07-07

How to Cite

Aladro Gonzalvo, A. R., Esparza Yánez, D., Tricás Moreno, J. M., & Lucha López, M. O. (2017). Validation of a force platform clinical for the assessment of vertical jump height. Journal of Human Sport and Exercise, 12(2), 367–379. https://doi.org/10.14198/jhse.2017.122.13

Issue

Section

Biomechanics