Effect of muscle strength at different intensities on resting energy expenditure
DOI:
https://doi.org/10.14198/jhse.2017.123.11Keywords:
Resting energy expenditure, Strength training, Exercise intensityAbstract
Introduction: the regular practice of physical exercise is an important modulator of resting energy expenditure (REE), which depending on the intensity, duration, and type of exercise can increase the REE in an acute manner as well as long term. The effects of dynamic muscular strength exercises on the REE have been treated very little in literature. Objective: compare the effect of muscle strength exercise (MSE) at different intensities on the REE in young males. Methods: Intra-group design. Fourteen subjects aged 22,5±1,5 <active (IPAQ= MET≥3000 week), realized two sessions of strength exercises at 2 intensities (40% and 80%RM), in 3 types of exercises (90° Squats; Bicep Curls, and Upright Row). Each session evaluated the same number of sets (3), repetitions (6), and rest time between sets (2min.). The REE was measured beforehand, immediately after, and 24 hours after by indirect calorimetry. Results: The REEpost (kcal/day) increased after the MSE at 40%RM, (p<0,05; CI=1950,67-2215,62) and at 80%RM, (p<0,001; CI=1947,10-2154,62), for a high and moderate effect size respectively. Differences in the % of change for both intensities (p<0,05) and a high effect size for 40%RM and moderate for 80%RM were found. No differences were found in the comparison (kcal/day) between REEpre y REEpost 24h (p>0,05) after the exercise at 40%RM. The REEpost 24h was maintained according to the REEpre when the intensity was 80%RM. Conclusion: The REEpost exercise is independent of the intensity of the exercise and only is maintained after 24 hours when the MSE is at a high intensity.
Downloads
References
Alexander, C. M. (2003). The coming of age of the metabolic syndrome. Diabetes Care, 26(11), 3180–1. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14578259 https://doi.org/10.2337/diacare.26.11.3180
Bangsbo, J., Gollnick, P. D., Graham, T. E., Juel, C., Kiens, B., Mizuno, M., & Saltin, B. (1990). Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. The Journal of Physiology, 422, 539–559. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1190148/ https://doi.org/10.1113/jphysiol.1990.sp018000
Benton, J. S., Anderson, J., Hunter, R. F., & French, D. P. (2016). The effect of changing the built environment on physical activity: a quantitative review of the risk of bias in natural experiments. The International Journal of Behavioral Nutrition and Physical Activity, 13(1), 107. https://doi.org/10.1186/s12966-016-0433-3
Bonfanti, N., Fernández, J. M., Gómez-Delgado, F., Pérez-jiménez, F. (2014). Efecto de dos dietas hipocalóricas y su combinación con ejercicio físico sobre la tasa metabólica basal y la composición corporal. Nutrición Hospitalaria, 29(3), 635–643. https://doi.org/10.3305/nh.2014.29.3.7119
Børsheim, E., & Bahr, R. (2003). Effect of Exercise Intensity, Duration and Mode on Post-Exercise Oxygen Consumption. Sports Medicine, 33(14), 1037–1060. https://doi.org/10.2165/00007256-200333140-00002
Capderou, A., Douguet, D., Losay, J., & Zelter, M. (1997). Comparison of indirect calorimetry and thermodilution cardiac output measurement in children. American Journal of Respiratory and Critical Care Medicine, 155(6), 1930–4. https://doi.org/10.1164/ajrccm.155.6.9196098
Cleland, B. T., Ingraham, B. A., Pitluck, M. C., Woo, D., & Ng, A. V. (2016). Reliability and Validity of Ratings of Perceived Exertion in Persons With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation. https://doi.org/10.1016/j.apmr.2016.01.013
da Rocha, E. E. M., Alves, V. G. F., & da Fonseca, R. B. V. (2006). Indirect calorimetry: methodology, instruments and clinical application. Current Opinion in Clinical Nutrition & Metabolic Care, 9(3). Retrieved from http://journals.lww.com/coclinicalnutrition/Fulltext/2006/05000/Indirect_calorimetry__methodology,_instruments_and.12.aspx https://doi.org/10.1097/01.mco.0000222107.15548.f5
Dolezal, B. A., Potteiger, J. A., Jacobsen, D. J., & Benedict, S. H. (2000). Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Medicine and Science in Sports and Exercise, 32(7), 1202–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10912882 https://doi.org/10.1097/00005768-200007000-00003
Durnin, J., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77–97. https://doi.org/10.1079/BJN19740060
Elliot, D. L., Goldberg, L., & Kuehl, K. S. (1992). Effect of resistance training on excess post-exercise oxygen consumption. Journal of Strength & Conditioning Research, 6(2).
Farinatti, P., Castinheiras Neto, A. G., & Amorim, P. R. S. (2016). Oxygen consumption and substrate utilization during and after resistance exercises performed with different muscle mass. International Journal of Exercise Science, 9(1), 77-88.
Farinatti, P. T. V, & Castinheiras Neto, A. G. (2011). The effect of Between-Set Rest Intervals on the Oxygen Uptake During and After Resistance Exercise Sessions Performed with Large- and Small-Muscle Mass. The Journal of Strength & Conditioning Research, 25(11), 3181-90. Retrieved from http://journals.lww.com/nsca-jscr/Fulltext/2011/11000/The_effect_of_Between_Set_Rest_Intervals_on_the.33.aspx https://doi.org/10.1519/JSC.0b013e318212e415
Frayn, K. N. (2010). Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiologica (Oxford, England), 199(4), 509–18. https://doi.org/10.1111/j.1748-1716.2010.02128.x
GAESSER, G. A., & BROOKS, C. A. (1984). Metabolic bases of excess post-exercise oxygen. Medicine and Science in Sports and Exercise, 16(1), 29–43. https://doi.org/10.1249/00005768-198401000-00008
Grundy, S. M., Abate, N., & Chandalia, M. (2002). Diet composition and the metabolic syndrome: what is the optimal fat intake? The American Journal of Medicine, 113(9), 25–29. https://doi.org/10.1016/S0002-9343(01)00988-3
Haddock, B. L., & Wilkin, L. D. (2006). Resistance training volume and post exercise energy expenditure. International Journal of Sports Medicine, 27(2), 143–148. https://doi.org/10.1055/s-2005-865601
Haltom, R. W., Kraemer, R. R., Sloan, R. A., Hebert, E. P., Frank, K., & Tryniecki, J. L. (1999). Circuit weight training and its effects on excess postexercise oxygen consumption. Medicine and Science in Sports and Exercise, 31(11), 1613–1618. https://doi.org/10.1097/00005768-199911000-00018
Haugen, H. A., Chan, L.-N., & Li, F. (2007). Indirect calorimetry: a practical guide for clinicians. Nutrition in Clinical Practice, 22(4), 377–388. https://doi.org/10.1177/0115426507022004377
Heden, T., Lox, C., Rose, P., Reid, S., & Kirk, E. P. (2011). One-set resistance training elevates energy expenditure for 72 h similar to three sets. European Journal of Applied Physiology, 111(3), 477–484. https://doi.org/10.1007/s00421-010-1666-5
Jamurtas, A. Z., Koutedakis, Y., Paschalis, V., Tofas, T., Yfanti, C., & Tsiokanos, A. (2004). The effects of a single bout of exercise on resting energy expenditure and respiratory exchange ratio. European Journal of Applied Physiology, 92(4-5), 393-8. https://doi.org/10.1007/s00421-004-1156-8
Jiménez Gutiérrez, A. (2007). La valoración de la aptitud física y su relación con la salud. Journal of Human Sport and Exercise, 2(2),53-71. https://doi.org/10.4100/jhse.2007.22.04
Marfell-Jones, M., Stewart, A., & de Ridder, J. (2006). International Society for the Advancement of Kinanthropometry. International Standards for Anthropometric Assessment. Potchefstroom (South Africa): International Society for the Advancement of Kinanthropometry.
Martin, A. D., Spenst, L. F., Drinkwater, D. T., & Clarys, J. P. (1990). Anthropometric estimation of muscle mass in men. Medicine and Science in Sports and Exercise, 22(5), 729–733. https://doi.org/10.1249/00005768-199010000-00027
Matsuura, C., Meirelles, C. de M., & Gomes, P. S. C. (2006). Gasto energético e consumo de oxigênio pós-exercício contra-resistência. Revista de Nutriçao, 19(6), 729–740. https://doi.org/10.1590/S1415-52732006000600009
Mazzetti, S., Douglass, M., Yocum, A., & Harber, M. (2007). Effect of explosive versus slow contractions and exercise intensity on energy expenditure. Medicine and Science in Sports and Exercise, 39(8), 1291–301. https://doi.org/10.1249/mss.0b013e318058a603
Nindl, B. C. (2009). Insulin-Like Growth Factor-I as a Candidate Metabolic Biomarker: Military Relevance and Future Directions for Measurement. Journal of Diabetes Science and Technology, 3(2), 371–376. https://doi.org/10.1177/193229680900300220
Olds, T. S., & Abernethy, P. J. (1993). Postexercise Oxygen Consumption Following Heavy and Light Resistance Exercise. The Journal of Strength & Conditioning Research, 7(3). Retrieved from http://journals.lww.com/nsca-jscr/Fulltext/1993/08000/Postexercise_Oxygen_Consumption_Following_Heavy.4.aspx
Ormsbee, M. J., Thyfault, J. P., Johnson, E. A., Kraus, R. M., Choi, M. D., & Hickner, R. C. (2007). Fat metabolism and acute resistance exercise in trained men. Journal of Applied Physiology, 102(5), 1767–72. https://doi.org/10.1152/japplphysiol.00704.2006
Ratamess, N. A., Falvo, M. J., Mangine, G. T., Hoffman, J. R., Faigenbaum, A. D., & Kang, J. (2007). The effect of rest interval length on metabolic responses to the bench press exercise. European Journal of Applied Physiology, 100(1), 1–17. https://doi.org/10.1007/s00421-007-0394-y
Robergs, R. A., Gordon, T., Reynolds, J., & Walker, T. B. (2007). Energy expenditure during bench press and squat exercises. The Journal of Strength & Conditioning Research, 21(1). Retrieved from http://journals.lww.com/nsca-jscr/Fulltext/2007/02000/Energy_expenditure_during_bench_press_and_squat.23.aspx https://doi.org/10.1519/00124278-200702000-00023
Roy, J. L. P., Hunter, G. R., & Blaudeau, T. E. (2006). Percent body fat is related to body-shape perception and dissatisfaction in students attending an all women's college. Perceptual and Motor Skills, 103(3), 677–84. https://doi.org/10.2466/pms.103.3.677-684
Schuenke, M. D., Mikat, R. P., & McBride, J. M. (2002). Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: implications for body mass management. European Journal of Applied Physiology, 86, 411–417. https://doi.org/10.1007/s00421-001-0568-y
Sedlock, D. A., Fissinger, J. A., & Melby, C. L. (1989). Effect of exercise intensity and duration on postexercise energy expenditure. Medicine and Science in Sports and Exercise, 21(6), 662,666. https://doi.org/10.1249/00005768-198912000-00006
Speakman, J. R., & Selman, C. (2003). Physical activity and resting metabolic rate. The Proceedings of the Nutrition Society, 62(3), 621–34. https://doi.org/10.1079/PNS2003282
Thornton, M.K, & Potteiger, J. A. (2002). Effects of resistance exercise bouts of different intensities but equal work on EPOC. Medicine & Science in Sports & Exercise, 34(4), 715-722. Retrieved from http://journals.lww.com/acsm-msse/Fulltext/2002/04000/Effects_of_resistance_exercise_bouts_of_different.24.aspx https://doi.org/10.1249/00005768-200204000-00024
Ulloa, D., Feriche, B., Barboza, P., & Padial, P. (2014). Effect of training intensity on the fat oxidation rate. Nutricion Hospitalaria, 31(1), 421–9. https://doi.org/10.3305/nh.2015.31.1.7424
Vingren, J. L., Kraemer, W. J., Hatfield, D. L., Volek, J. S., Ratamess, N. A., Anderson, J. M., Häkkinen, K., Ahtiainen, J., Fragala, M.S., Thomas, G.A., Ho, J.Y., & Maresh, C. M. (2009). Effect of resistance exercise on muscle steroid receptor protein content in strength-trained men and women. Steroids, 74(13), 1033–1039. https://doi.org/10.1016/j.steroids.2009.08.002
Weir, J. B. (n.d.). New methods for calculating metabolic rate with special reference to protein metabolism. 1949. Nutrition (Burbank, Los Angeles County, Calif.), 6(3), 213–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2136000
Wingfield, H. L., Smith-Ryan, A. E., Melvin, M. N., Roelofs, E. J., Trexler, E. T., Hackney, A. C., Weaver, M.A., & Ryan, E. D. (2015). The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial. Sports Medicine - Open, 1(1), 11. https://doi.org/10.1186/s40798-015-0010-3
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.