Analysis of the effectiveness of the use of instep weights (Powerinstep) in everyday runners
DOI:
https://doi.org/10.14198/jhse.2018.132.17Keywords:
Instep weights, Powerinstep, Runners, Bosco test, Léger test (UMTT)Abstract
The use of weights when training is very common, especially in compensatory work and in performing supplementary exercises. A new type of weight appeared in the market in 2015 with the name of Powerinstep. It is a weight placed on the instep of athletes running shoes (Padullés & Rius, 2015). The goal of this study was to analyse the effectiveness of the use of these weights (Powerinstep) regarding the effect of biomechanical and certain athletic performance variables on two everyday runners groups with similar training methods. The sample used was composed of 19 subjects (9 male and 10 female). The control group (without weight) was made up of 4 subjects and the experimental group had 15 subjects (4 had 50 gram weights on each foot, 5 had 100 grams on each foot, and 6 had 150 grams on each foot). The weight given to each athlete depended on their body weight. There was a pre-test and a post-test done to each athlete with a training period of 14 weeks in between. These tests were: the Bosco test (SJ, CMJ, and ABK) and the Léger test (UMTT). The analysed variables were: height (cm) in SJ, CMJ, and ABK; time (s) in the Léger test; maximum and average heart rate (bpm); contact, flight, and passing times (s) of both left and right feet; step length (m) both left and right feet; stride length (m); the elevation of the centre of mass (cm) during left and right steps and the strides. Both the experimental group and the control group trained under the same time and schedule conditions, with the same work volume, and used the same training system. The only thing that varied between the groups was the whether they used weights or not. Given the sample characteristics, the statistical analysis method was non-parametric (Wilcoxon test). A comparative analysis of the variations between the pre-test and the post-test was done, both in the intergroups (control vs. experimental) and the intragroups (between the 3 subgroups of the experimental group). The differences found in the variations of the control group were not statistically significant (p<0.05). Neither were they in comparing the variations of the intragroups between the subgroups of 50g, 100g, and 150g weights (p<0.05). With this, it can be deduced that the weights given to each athlete regarding their body weight were correct. Statistically significant differences were found in the variations of the experimental group regarding the length of the stride (p=0.05), increasing this one, as well as the length of the left step (p=0.04). However, it has to be taken into account that the length of the step can be considered an improvement, but only if it is regulated to fit each athlete’s ideal step length in relation to their trochanteric length, and if it is also associated with an increase of their driving force. Likewise, given the limitations of the sample for significant changes to be given over time, tendencies of the changes in the average percentages were analysed. Even if they did not offer statistically significant differences, they did offer results to take into consideration. This way, variations with higher percentages were found, and they were technically positive for the experimental group in 12 of the 18 analysed variables. The most noteworthy ones were: SJ (increase in the height of the flight (5.99%), Léger test (increase in the time (5.78%), length of both right and left steps (increases 5.99% and a 10.85% respectively), and the length of the stride (increases 8.11%).
Downloads
References
Ahmaidi S., Collomp K., Caillaud C., Prefaut C. (1992) Maximal and functional aero-bic capacity as assessed by two graduated field methods in comparison to laboratory exercise testing in moderately trained subjects. Int J Sports Med. 1992; 13 (3): 243-8. https://doi.org/10.1055/s-2007-1021261
Balsalobre, C.; Tejero, CM.; Del Campo, J.; Bavaresco, N. (2013) The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. The Journal Of Strength And Conditioning Research. May 2013.
Bosco, C. (1994) "La valoración de la fuerza con el test de Bosco". Colección Deporte y Entrenamiento. Ed. Paidotribo. Barcelona.
Buscà, C.; Quintana, M. & Padullés, JM. (2016) High-speed cameras in sport and exercise: Practical applications in sport training and performance analysis. ALOMA. Revista de Psicologia, Ciències de l'Educació I de l'Esport, 34 (2), 13-23.
De Blas, X.; Padullés, JM.; López JL.; Guerra, M. (2012) Creation and Validation of Chronojump-Boscosystem: A Free Tool to Measure Vertical Jumps. International Journal of Sport Science (Vol. 8, Núm. 30: 334-356).
García GC., Secchi JD., Cappa DF. (2013) Comparison of the Maximal Oxygen Uptake Predictive Using Different incremental field test: UMTT, VAM-EVAL and 20m-SRT. Arch Med Deporte. 2013; 30 (3): 76-82.
Léger L.; Boucher R. (1980) An indirect continuous running multistage field test: Université de Montréal track test. Can J Appl Sports Sci 5:77-84.
Padullés, JM. & Rius, J. (2015) Entrenamiento con lastres en los pies. Sport Training. Revista técnica del deporte de competición, 63, 4.
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.