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ABSTRACT 

 
The purpose of the present work was to present a case study on the influence of implementing a structured 
strength training intervention in adolescent middle distance athletes. An 8 wk strength training intervention 
was implemented concurrent to the group’s middle distance training. Prior to and following the intervention a 
testing battery was implemented and the following physical qualities were assessed: aerobic capacity, lactate 
threshold, economy, time trial performance, lower body power and vertical stiffness. The concurrent strength 
and endurance training intervention was an effective training paradigm for improving economy, running 
performance and strength phenotypes in elite adolescent middle distance athletes. Keywords: Middle 
distance; Economy; Youth; Plyometric; Time trial. 
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INTRODUCTION 
 
Middle distance (800 – 1500 m) running performance is multi-factorial and dependent on numerous physical 

qualities. These include; aerobic capacity (𝑉̇O2max), maximal speed, speed endurance, anaerobic capacity 

and fatigue resistance as well as the velocity associated with 𝑉̇O2max (Bassett & Howley, 2000; Houmard, 
Costill, Mitchell, Park, & Chenier, 1991; A. M. Jones & Carter, 2000; Midgley, McNaughton, & Jones, 2007; 

Rogers, Whatman, Pearson, & Kilding, 2017). Amongst junior or lessor trained athletes, 𝑉̇O2max has been 
used for predicting performance and for talent identification purposes (McLaughlin, Howley, Bassett, 
Thompson, & Fitzhugh, 2010; Noakes, Myburgh, & Schall, 1990). However, more recent work on well trained 
and elite athletes has indicated that running performance in such distances is more likely influenced by the 
combination of running economy (RE), lactate threshold, velocity at lactate threshold and body composition 
rather than aerobic capacity alone (Morgan & Craib, 1992). For this reason, training programmes for middle 
distance runners should not be focused only in improving aerobic capacity but also running technique 
(Folland, Allen, Black, Handsaker, & Forrester, 2017) and lactate clearance to seek improvements in RE and 
running speed. There has been a considerable amount of research work detailing the effectiveness of various 
endurance training methods with particular reference to polarized vs. threshold models etc. (Neal et al., 2013; 
Seiler & Kjerland, 2006; Stöggl & Sperlich, 2014). Recent work seems to suggest greater effects of polarized 
training in recreational adult runners (Muñoz et al., 2014) when compared to between threshold training. 
However, a review of the literature has concluded that there is no “optimal” training distribution to maximise 
endurance performance in well trained and elite athletes (Stöggl & Sperlich, 2014). While such studies 
provide insight in the training content of endurance activities they don’t provide information about other 
training elements typically experienced by elite/fulltime endurance athletes. In recent years, it also has been 
acknowledged that strength training may have a beneficial effect on middle distance running performance 
(Berryman, Maurel, & Bosquet, 2010; Hoff, Gran, & Helgerud, 2002; Rønnestad & Mujika, 2014), in particular 
strength training performed concurrently to endurance training (Balsalobre-Fernández, Santos-Concejero, & 
Grivas, 2016; Barnes & Kilding, 2015; Denadai, de Aguiar, de Lima, Greco, & Caputo, 2017) despite the 
potential for combining such modalities to impair some adaptations at the skeletal muscle level (Fyfe, Bishop, 
& Stepto, 2014). 
 
Despite, the conflicting results in mechanistic studies, a recent meta-analysis conducted by Berryman et al. 
(Berryman et al., 2017) concluded that the inclusion of strength training alongside sport specific training 
improves endurance performance to a greater extent than sport specific training performed in isolation. 
Strength training is nowadays part of the training regime of endurance athlete and middle distance runners 
mainly because of its beneficial effect on endurance performance due to the reduction in the energy cost of 
locomotion, [therefore improving “RE” (A. M. Jones & Carter, 2000; Rønnestad & Mujika, 2014)]. Additional 
meta-analyses have reported large beneficial effects of strength training on RE in highly trained middle and 
long distance runners (Balsalobre-Fernández et al., 2016), as well as the positive effects of explosive and 
heavy strength training in improving RE (Beattie, Carson, Lyons, Rossiter, & Kenny, 2017; Beattie, Kenny, 
Lyons, & Carson, 2014; Denadai et al., 2017). There is also further evidence that adding strength training in 
a concurrent manner to an existing endurance programme has been further shown to improve the RE of 
athletes as well as provide protection against musculoskeletal running injuries (Munekan & Ellapen, 2015). 
Both heavy strength training and explosive strength training was shown to improve running speed, running 

power and 𝑉̇O2max possibly due to an improved musculo-tendinous unit stiffness, fibre type conversion and 
improved neuromuscular efficiency (Denadai et al., 2017; Rønnestad & Mujika, 2014). 
 
Much of the previous research into the impact of strength training on middle distance performance and RE 
has been conducted in senior level athletes (Barnes, Hopkins, McGuigan, Northuis, & Kilding, 2013; Doma 
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& Deakin, 2015; Marcello, Greer, & Greer, 2016; Vikmoen et al., 2016; Vorup et al., 2016). Limited data are 
available in junior populations. Mikkola et al. (Mikkola, Rusko, Nummela, Pollari, & Häkkinen, 2007) reported 
no improvements in RE after 8 weeks of replacing 1 endurance session a week with explosive strength 
training. Previous work (albeit not in adolescent populations) has reported RE and endurance performance 
to be improved by 2-3 strength type sessions per week (Guglielmo, Greco, & Denadai, 2009; Paavolainen, 
Häkkinen, Hämäläinen, Nummela, & Rusko, 1999; Rønnestad & Mujika, 2014; Taipale et al., 2010). As such, 
it may be reasonable to suggest that a higher frequency of strength training combined with typical endurance 
training may elicit improvements in running performance. While this seems to be established, it is difficult for 
coaches to translate the applicable training plans. In most studies in fact, training load was only quantified in 
terms of training time, as such the details of the training performed during the experimental period are 
somewhat vague. Despite there being limited data on training and endurance performance available in 
adolescent athletes it has been proposed that the beneficial effects of strength training on endurance 
performance occur irrespective of the athletes level (Berryman et al., 2017). As such, it feasible to suggest 
that a structured strength training intervention involving 2 strength sessions per week, conducted concurrently 
with middle distance training can contribute to improvements in endurance performance and RE and it is 
unlikely to influence performance impairments. 
 
The purpose of the present work is to present a retrospective study on the influence of implementing a 
structured strength training intervention (alongside middle distance specific training) in full time adolescent 
middle distance athletes on RE and other running and physical performance indicators. The study was 
conducted to analyse middle distance and strength training performed by the athletes and assess their 
progress. It was hypothesised that the implementation of a structured strength training intervention would 
improve running economy and other running performance indicators. It is hoped that the data presented here 
will provide practitioners, supporting junior middle-distance athletes, information on what performance 
increments can be expected following 8 weeks of combined strength and endurance training. 
 
MATERIAL AND METHODS 
 
Participants 
Nine adolescent male middle distance athletes (mean ± standard deviation, age 15.8 ± 1.5 years, stature 

173.2 ± 9.5 cm, body mass 56.1 ± 10.3 kg, ∑7 skinfolds 41.5 ± 5.6 mm, 𝑉̇O2max 60.4 ± 6.2 ml·kg·min-1, PHV 
status 1.4 ± 1.5 years) from an elite sports academy in the middle east participated. Peak height velocity 
(PHV) was calculated via the Mirwald method (Mirwald, Baxter-Jones, Bailey, & Beunen, 2002). 
 
Procedures 
Data collection commenced at the start of the Sports Academy’s academic year (September 2015), prior to 
which participants had performed minimal structured training of any kind for ≥4 wk. At the start of the 
observation period many participants had minimal or no exposure to structured strength training. A 
comprehensive testing battery was implemented and the following physical qualities were assessed: aerobic 
capacity, lactate threshold, RE, time trial performance on the track, lower body power and vertical stiffness. 
Following these assessments participants completed 8 wk of structured training. 
 
Middle distance specific training was prescribed by the group’s Head Coach, details of training content and 
intensity distribution are presented in Table 1 and Figure 1. Throughout training sessions participant’s heart 
rate (HR) was recorded using Polar RS800CX monitors (Polar Electro, Kempele, Finland) for the purposes 
of quantifying training load using Bannister and Edwards approaches (for details see 2,12). The 
aforementioned training load quantification methods were also used to calculate acute and chronic training 
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loads and training stress balance (Hulin et al., 2014). Distances covered, peak and average velocities 
achieved were also quantified via Polar RS800CX global positioning satellite (GPS) systems (Polar Electro, 
Kempele, Finland) recording at 60 Hz. 
 
Table 1. Summary of middle distance type training performed over the 8 wk experimental period. Data are 
reported as mean ± SD per athlete unless otherwise specified. 

 Bike Fartlek Hills Lab test 
Long 
run 

Strides Tempo Track 
aSum / 

bAverage 

Training 
time 
(hh:mm:ss) 

0:53:49 ± 
0:49:25 

6:37:37 
± 

3:26:28 

5:12:12 
± 

1:54:53 

0:58:00 ± 
0:25:47 

22:32:50 
± 

8:10:36 

1:03:45 
± 

0:26:59 

0:55:13 
± 

0:42:26 

10:20:34 
± 

3:45:39 

a47:53:00 
± 

13:21:22 
% training 
time 

0.8 ± 0.2 
13.8 ± 

0.8 
10.9 ± 

0.4 
2.0 ± 0.1 

47.1 ± 
1.9 

2.0 ± 
0.1 

1.8 ± 
0.3  

21.6 ± 
0.9 

- 

Distance 
covered 
(km) 

* 
45.8 ± 
28.7  

32.6 ± 
12.8 

* 
163.4 ± 

71.4 
6.6 ± 
1.9 

16.9 ± 
3.0 

28.9 ± 
7.8 

a294.3 ± 
104.4 

Ave velocity 
(m·s-1) 

* 
2.3 ± 
0.4 

1.8 ± 
0.2 

* 2.3 ± 0.3 
1.2 ± 
0.3 

1.9 ± 
0.2 

6.1 ± 0.3 
b2.6 ± 

1.8 

% time 
spent in HR 
zone 5 

0.5 ± 0.5 
11.3 ± 

5.0 
5.7 ± 
3.5 

13.8 ± 9.3  2.6 ± 4.1 
0.2 ± 
0.8 

17.9 ± 
10.9 

8.1 ± 4.0 - 

% time 
spent in HR 
zone 4 

 14.2 ± 13.7  
17.9 ± 

5.1 
14.0 ± 

4.3 
32.7 ± 3.9 

16.3 ± 
10.9 

6.5 ± 
7.2 

7.1 ± 
5.1 

13.9 ± 
2.6 

- 

% time 
spent in HR 
zone 3 

 12.4 ± 10.2 
22.4 ± 

6.7 
25.9 ± 

7.6 
25.1 ± 10.2 

34.6 ± 
9.8 

 30.7 ± 
12.2 

15.9 ± 
13.4 

21.3 ± 
6.4 

- 

% time 
spent in HR 
zone 2 

17.5 ± 8.8 
25.7 ± 

4.3 
30.2 ± 

6.0 
15.0 ± 5.6 

27.8 ± 
9.6 

27.4 ± 
8.6 

 24.4 ± 
2.2 

31.1 ± 
7.8 

- 

% time 
spent in HR 
zone 1 

55.4 ± 21.2  
22.7 ± 

3.8 
 24.2 ± 

7.7 
 13.4 ± 6.9 

 18.7 ± 
5.9 

35.2 ± 
12.5 

34.7 ± 
7.2 

25.5 ± 
5.7 

- 

Edwards 
TRIMP (AU) 

69.2 ± 35.6 
150.7 ± 

22.3 
152.6 ± 

33.9 
101.1 ± 

13.0 
136.0 ± 

21.1 
118.7 ± 

57.6 
 126.0 
± 19.9 

143.9 ± 
24.4 

b138.6 ± 
21.4 

AU = arbitrary units, Ave = average, Edwards TRIMP = Edwards training impulse, HR zone 5 = ≥90% HRmax, HR zone 4 = 80 - 
89% HRmax, HR zone 3 = 70 - 79% HRmax, HR zone 2 = 60 - 69% HRmax, HR zone 1 = 50 - 59% HRmax, * training conducted 
indoors, as such, GPS data are unavailable. 

 
Alongside the track specific training, the athletes were prescribed a structured strength training intervention 
by an accredited strength and conditioning coach. Strength training was a combination of total body strength 
training exercises with a focus on lower body development alongside plyometric activity designed to develop 
qualities beneficial to middle distance running performance (Giovanelli, Taboga, Rejc, & Lazzer, 2017). 
Exercise sets and repetitions were prescribed to focus on strength development across multiple training sets. 
During the programme, loading progression and volume prescription was based on athlete exercise quality 
and maintaining values that would elicit training progression. The training session data was administered and 
recorded through an online software (VisualCoaching® Pro, Visual Coaching Pty, Melbourne, Australia, V. 
2.0.45.0) and each training session was supervised by at least one coach and the athletes were required to 
tick the completed set/reps schemes and/or correct the weights lifted. All data is reported as exercise volume 
load (load per set x number of repetitions), average exercise load (average load per exercise) and average 
repetitions completed per training set. Plyometric exercises were differentiated as either slow or fast stretch-
shortening cycle based on the ground contact/movement time of above/below 250ms. (Slow -Vertical box 
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jumps, broad jumps, squat jumps. Fast - pogo jumps, depth rebound jumps). All Plyometric data are reported 
by total contacts per type of exercise. Details are presented in Table 2. 
 

 
Figure 1. Distribution of middle distance training intensity over the experimental period. Zone 1 = 50 – 59% 
HRmax, zone 2 = 60 – 69% HRmax, zone 3 = 70 – 79% HRmax, zone 4 = 80 – 89 HRmax and zone 5 = 
≥90% HRmax. 
 
Table 2. Summary of strength and plyometric type training performed over the 8 wk experimental period. 
Data are reported as mean ± SD per athlete unless otherwise specified. 

Strength training loading  Load 

Lower Body Average Volume Load per set (reps*load kg)  134.0 ± 158.3 

Lower Body Exercise Average Weight (kg)  15.6 ± 19.9 

Lower Body Average Repetitions per set  7.4 ± 7.2 

Upper Body Average Volume Load per set (reps*load kg)  37.8 ± 116.8 

Upper Body Exercise Average Weight (Kg)  3.2 ± 10.0 

Upper Body Average Repetitions per set  13.0 ± 4.6 

Lower Body Bilateral Average Volume Load per set (reps*load kg)  167.4 ± 162.9 

Lower Body Bilateral Exercise Average Weight (kg)  19.5 ± 21.3 

Lower Body Bilateral Average Repetitions per set  8.4 ± 7.7 

Lower Body Unilateral Average Volume Load per set (reps*load kg)  90.8 ± 151.3 

Lower Body Unilateral Exercise Average Weight (kg)  10.8 ± 17.5 

Lower Body Unilateral Average Repetitions per set  5.9 ± 6.2 

Core Exercise Average Volume Load per set (reps*load kg)  6.8 ± 7.7 

Core Exercise Average Repetitions per set  6.8 ± 7.7 

Fast SSC1 Plyometric contact per session  204.1 ± 184.2 

Slow SSC2 Plyometric contact per session  26.9 ± 12.4 
1Fast SSC = Stretch shortening cycle (ground contact under 250 m·s-1), 2Slow SSC = Stretch shortening cycle (ground 

contact over 250 m·s-1) 
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Following the 8 wk intervention all variables analysed at baseline were assessed to examine the influence of 
the training intervention on the physical qualities of interest, in particular RE. 
 
All procedures were part of the routine sports science support provided to the athletes and coaches and were 
approved by the local review board as part of a wider growth and maturation study on young athletes 
[E20140000012]. As the participants are all minors, they had their informed consent signed by the parents 
when enrolling at the school. 
 
Aerobic capacity, lactate threshold and economy assessments 
All assessments of aerobic capacity and lactate threshold were conducted via running on a motorised 
treadmill (Woodway ELG, Woodway Inc, WI, USA) with online breath by breath analysis (Oxycon Pro, Jaeger, 
Carefusion, Hoechberg, Germany). All assessments were conducted in line with standardised procedures 
developed in the laboratory, however, a brief description of the testing protocol is provided here: 
 
Initially participants completed a standardised warm up consisting of; 3 min at 2 kmh-1 below starting speed 
of the submaximal lactate threshold test, 2 min at 1 kmh-1 below starting speed, 3 min at starting speed and 
2 min at 2 kmh-1 below starting speed. Following the warm up a 5-min relief period was provided prior to 
commencing the submaximal lactate threshold protocol. Participants completed 3 min incremental stages 
with running speed increasing 1 kmh-1 upon completion of each stage. Starting speed was selected based 
on historical data from each participant (if available) and was consistent between observations. The 
submaximal protocol ended when participants blood lactate concentrations (BLA) reached above 4 mmolL-

1. Lactate threshold was established as the running speed at which BLA reached above 4 mmolL-1. RE was 
calculated in the last minute of each 3-min stage of the submaximal lactate threshold protocol as gross 

oxygen cost; 𝑉̇O2 (ml·kg·min-1) / (workload (km·h-1) / 60). For analysis purposes RE was reported as the 
mean RE of all stages of the individual athlete’s submaximal test. Following a 10-min rest period participants 

began the maximal aerobic capacity (𝑉̇O2max) assessment. Participants ran at the speed of their individual 
lactate threshold; treadmill incline was increased 1%·min-1 until participants reached volitional exhaustion. 
 
Time trials (TT) 
Participants completed 3 time trials on an indoor 200-m athletics track. The 3 trials were over set distances 
of 1800, 1200 and 600 m (9, 6 and 3 laps) and were kept in the same order for pre-and post-intervention 
observations. All 3 trials were conducted on the same day with a 10-min relief period between efforts. 
 
Countermovement jump assessment 
Participants completed 3 maximal effort jumps with the hands-on hips. The jumps were completed with each 
foot on series linked force plates (Kistler, type 9281CA, Winterthur, Switzerland). Kinetic data collection was 
managed through Bioware software (version 5.2.1.3). Only the jump with the greatest height was reported. 
Jump height was derived from impulse-momentum method and relative power was calculated using body 
mass measured on the force plate and peak power. 
 
Vertical stiffness assessments 
In order to assess vertical stiffness of the lower limb, the repeated hopping test was performed on a dual 
force plates (Kistler, type 9281CA, Winterthur, Switzerland). Before the hopping test, all participants were 
instructed to place their hands on their hips, keep their knees straight and land in a similar position to that of 
take-off from the force plates and minimize ground contact times as possible, which minimize secondary 
movements in knee and hip joints. Participants performed a series of 30-40 consecutive bilateral hops for the 
2.2 Hz sub-maximal hopping test. Hopping frequency was provided with a digital metronome (Seiko DM-50, 
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Seiko sports life Co., Ltd, Tokyo, Japan) in visual and auditory signals. For the maximal hopping test, 
participant performed a series of 10-15 maximal height hops. Hopping frequency, ground contact time, and 
aerial time were calculated from the vertical component of ground reaction force (GRF). Vertical stiffness 
(kvert) was calculated as: 
 

kvert = Fmax/∆y 
 
where Fmax is the peak vertical GRF and ∆y is maximum vertical displacement of the center of mass, which 
was calculated by integrating the vertical acceleration twice with respect to time (McMahon & Cheng, 1990). 
The initial velocity of the first integration was estimated by the aerial time of the previous hop (Hobara et al., 
2009) kvert was normalized relative to body weight and leg length. All calculations were processed using 
custom written Matlab program (version 8.4, Mathworks, Natick, MA). 
 
Skinfold assessments 
All assessments were performed in accordance with those set by the International Society for Advancement 
of Kinanthropometry (ISAK) (Lohman, Roche, & Martorel, 1988) and all assessments were conducted by 
practitioners accredited by said professional body. Sum of the following 7 sites (mm) were used for analysis; 
tricep, bicep, subscapular, abdomen, suprailliac, iliac crest and mid-thigh. 
 
Analysis 
Data are presented as mean ± standard deviation. Prior to analysis, dependent variables were verified as 
meeting required assumptions of parametric statistics. Outcome measures pre and post intervention were 
analysed using a student’s t-test. (SPSS, version 24, Chicago, IL). Pearson’s correlation (r) analysis was 
employed to evaluate any relationships between changes in economy and other performance indices. 
Correlation analysis was also employed to analyse any relationships between middle distance and strength 
type training load and any changes in outcome measures. The alpha level of 0.05 was set prior to data 
analysis. Statistical power of the study was calculated post-hoc using G*Power statistical software (v3.1.3, 
Düsseldorf, Germany) using the effect size, group mean, SD and sample size of the primary outcome 
measures, in this case being economy variables. Power was calculated as between 0.8 and 1 indicating 
sufficient statistical power (Cohen, 1992). 
 
In addition, probabilistic magnitude-based inferences about the true value of outcomes were employed 
(Batterham & Hopkins, 2006). Dependent variables were analysed to determine the effect of the designated 
condition as the difference in change following each condition. To calculate the possibility of benefit, the 
smallest worthwhile effect for each dependent variable was the smallest standardized change in the mean – 
0.2 times the between-subject SD for baseline values of all participants. This method allows practical 
inferences to be drawn using the approach identified by Batterham and Hopkins (Batterham & Hopkins, 
2006). Furthermore, standardized effect size (Cohen’s d) analyses were used to interpret the magnitude of 
any differences (Cohen, 1992). 
 
RESULTS 
 
A summary of the outcomes measures assessed pre-and post-intervention, including; RE, other physical 
performance phenotypes, body mass and ∑7 skinfolds are presented in Table 3. 
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Table 3. Summary of any changes in outcome measure between pre-and post-intervention 

Variable Pre-intervention 
Post- 

intervention 
% Δ 

P 
value 

Effect 
size 

Qualitative 
inference 

PHV status (years) 1.4 ± 1.5 1.7 ± 0.3 24.4 .003 .33 Very likely trivial 

Body mass (kg) 56.1 ± 10.3 57.5 ± 10.5 2.5 .005 .19 Most likely trivial 

∑7 skinfolds (mm) 41.5 ± 5.6 39.9 ± 4.8 -3.8 .034 .43 Possibly beneficial 

Ave relative economy 
(ml·kg·km-1) 

227.2 ± 22.5 217.6 ± 12.4 -4.2 .038 .75 Likely beneficial 

600 m TT (mm:ss) 
01:42.35 ± 
00:08.82 

01:39.92 ± 
00:08:65 

-2.4 .164 .39 Possibly trivial 

1200 m TT (mm:ss) 
03:53.83 ± 
00:15.15 

03:41.80 ± 
00:11.79 

-5.1 .088 1.25 Likely beneficial 

1800 m TT (mm:ss) 
05:57.77 ± 
00:26.96 

05:44.30 ± 
00:13.69 

-3.8 .005 .89 Likely beneficial 

CMJ (m) .31 ± .04 .33 ± .03 6.1 .018 .74 Possibly beneficial 
CMJ (W·kg-1) 48.4 ± 3.4 50.5 ± 4.4 4.2 .076 .73 Possibly beneficial 

Reactive index (AU) 2.2 ± 0.5 2.1 ± 0.4 -4.1 .032 .28 Very likely trivial 

Stiffness 2.2 Hz (AU) 38.7 ± 6.1 45.4 ± 7.4 17.3 .003 1.40 
Very likely 
beneficial 

𝑉̇O2max (ml·kg·min-1) 60.4 ± 6.2 59.8 ± 5.7 -1.1 .348 .15 Possibly trivial 

v𝑉̇O2max  

(km·h-1) 
16.1 ± 1.6 16.6 ± 1.3 3.0 .167 .47 Possibly trivial 

Peak 𝑉̇O2(L·min-1) 3.4 ± 0.9 3.4 ± 0.7 -1.3 .317 .08 Most likely trivial 

HRmax (Beats·min-1) 194.4 ± 5.5 191.7 ± 6.1 -1.4 .194 .68 Possibly beneficial 

Lactate threshold (km·h-1) 14.8 ± 2.1 15.4 ± 1.5 3.7 .114 .42 Possibly trivial 
Peak lactate (mmol·L-1) 6.7 ± 1.6 5.6 ± 1.1 -16.7 .056 1.14 Likely beneficial 

AU = arbitrary units, Ave = average, CMJ = countermovement jump, HRmax = maximum heart rate, PHV = peak height velocity, 
TT = time trial, vV ̇O2max = velocity at V ̇O2max 

 
The null hypothesis was rejected and statistically significant differences (p < 0.05) between pre-and post-
intervention were identified in the following variables; body mass, ∑7 skinfolds, RE, 1800 m TT performance, 
reactive index and vertical stiffness. Furthermore, large effect sizes (> 0.70) were observed for the following 
variables; RE, 1200 m TT performance, 1800 m TT performance, CMJ (m), CMJ (W·kg -1), vertical stiffness 
and peak lactate. A summary of inferential statistical analysis is presented in Table 3. % increases in CMJ 
(W·kg-1) were highly correlated with improvements in 1200 m TT performance (r = 0.977, p = 0.023). 
 
Correlations between strength training loadings and physical performance increments included; 1800 m TT 

performance and reductions in HRmax during the 𝑉̇O2max test and slow stretch-shortening cycle plyometric 
training volume. Significant correlations between improvements in performance phenotypes and middle 
distance training loadings were present between; vertical stiffness and % training time in HR zones 4 and 5 
and average Edwards TRIMP, 1200 m TT performance and % training time in zone 4 and average velocity 

during training, reductions in peak lactate during 𝑉̇O2max test and time spent performing tempo training, and 
reductions in peak lactate and total distance covered. Inverse correlations were observed between 
improvements in; vertical stiffness and % training time in zones 1 and 2, 1200 TT performance and % training 
time in zone 1, CMJ and time spent performing long runs and in zone 1. A full summary is presented in Table 
4. 
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Table 4. Summary of significant correlations observed between % increase in outcome measures and training 
load metrics 

 
1200 m 

TT 
1800 m 

TT 
CMJ (W·kg-

1) 
Stiffness 2.2 

Hz 
HRmax 

Peak 
lactate 

% time spent in HR zone 5       
r    .754   
p    .019   

% time spent in HR zone 4       
r .965   .803   
p .035   .009   

% time spent in HR zone 2       
r    -.709   
p    .032   

% time spent in HR zone 1       
r -.987  -.708 -.867   
p .013  .033 .003   

Ave Edwards TRIMP       
r    .716   
p    .030   

% time spent performing long run       
r   -.672    
p   .047    

% time spent performing tempo 
training 

      

r      .972 
p      .028 

Ave velocity       
r .961      
p .039      

Total distance covered       
r      .783 
p      .013 

Slow SSC plyometric training volume       
r  .950   .759  
p  .050   .018  

Ave = average, CMJ = countermovement jump, HRmax = maximum heart rate, SSC = stretch shortening cycle, TT = time trial. % 
Δ peak lactate values are inverted, thus an increase is beneficial. 

 
DISCUSSION 
 
The purpose of this study was to present a retrospective analysis on the influence of a structured strength 
training intervention concurrent to middle distance training on RE and other performance variables in 
adolescent middle-distance athletes. The 8 wk period of training resulted in improvements in; 1200 and 1800 
m TT performance, RE, vertical stiffness, CMJ, ∑7 skinfolds and peak lactate. 
 
Arguably the most important performance indicator for a middle-distance athlete is the time in which they are 
able to run a specified distance, or “time trial performance”. Therefore, the primary finding of this period of 
observation was that 8 weeks of concurrent strength and middle distance training intervention improved 1200, 
and 1800 m TT performance. These findings are in part consistent with those of Berryman et al. (Berryman 
et al., 2017), who reported strength type moderately improves endurance type performance, when conducted 
alongside endurance training. Large improvements in endurance performance were observed here (ES; 1800 
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m = .89, 1200 m = 1.25). This may be explained by the fact that at the start of the intervention many 
participants had performed minimal structured training for ≥4 wk. 
 
Improvements in 1200 m TT performance were correlated with improvements in relative power output during 
CMJ (W·kg-1). Furthermore, improvements in 1800 m time trial performance were positively correlated with 
slow stretch-shortening cycle plyometric training volume. Combined, these data may indicate that 
improvements in explosive strength and accumulated volume of plyometric training may be beneficial for 
longer distance TT performance in adolescent athletes. Additional credibility is added to the hypothesis that 
strength training (particularly explosive and plyometric orientated training) is beneficial for endurance 
performance by the fact that improvements in endurance performance are coupled with improvements in 
tests assessing neuromuscular function (Berryman et al., 2017). Previous work has also indicated that 
maximal and explosive strength have been shown to differentiate between running performances across age 
ranges from young to old (Quinn, Manley, Aziz, Padham, & MacKenzie, 2011). In addition to improvements 
in TT performance and explosive strength (as assessed by CMJ) vertical stiffness was also improved 
following the training intervention. Although no correlations between improvements in vertical stiffness and 
TT performance were observed in our cohort, previous work has suggested that stiffness is related to running 
speed and possibly economy (Hobara et al., 2009; McMahon & Cheng, 1990). Average RE relative to body 
mass was improved by the concurrent strength and endurance training intervention also which has possibly 
contributed to the improvement in running times. 
 

Although TT performance was improved, aerobic variables including; 𝑉̇O2max, velocity at 𝑉̇O2max, peak 

𝑉̇O2max, HRmax and lactate threshold were virtually unchanged improved following the 8-week concurrent 
intervention. This is consistent with a previous study in which endurance athletes completed 8 weeks of 
explosive type strength training alongside their habitual endurance training and observed improvements in 5 

km time trial performance without alterations in 𝑉̇O2 kinetics. Combined these data indicate that 
neuromuscular adaptations and likely increments in strength and power of the trained musculature were 
mostly responsible for the improvement in TT (Paavolainen, L,. Hakkinen, I,. Hamalainen, A,. Nummela, A,. 
Rusko, 2003). It has also shown that longer training programmes (>8 wk) are needed to elicit improvements 
in RE and Aerobic Capacity in growing athletes which may be due to the time it takes for the qualities being 
trained to develop to an useful level within the movement of running (Denadai et al., 2017; Thomas, Fernhall, 
& Granat, 1999). 
 
Inverse relationships were observed between improvements in vertical stiffness and CMJ and % time spent 
performing long runs and % training time in low HR zones (1 & 2). This may indicate that higher volumes of 
prolonged low intensity endurance type training could have a muting effect on the development of explosive 
strength and vertical stiffness. This “interference effect” (Hickson, 1980) has previously been reported with 
strength development being inhibited following higher volumes of endurance type training (Häkkinen et al., 
2003; T. W. Jones, Howatson, Russell, & French, 2016; McCarthy, Pozniak, & Agre, 2002). Furthermore, the 
aforementioned work noted that explosive phenotypes, like CMJ, were more susceptible to the so called 
“interference effect” than maximal strength indices. Additionally, previous work has reported smaller effects 
of strength training interventions on maximal power than maximal strength in endurance athletes (Berryman 
et al., 2017). These data indicate that practitioners seeking to develop explosive strength qualities in 
adolescent endurance athlete should consider alternative endurance training modalities to long low intensity 
runs when the focus of the training period is strength. % time spent performing fartlek, hills, tempo and track 
based training were not associated with any inhibition of explosive strength development, and as such, these 
methods may be appropriate alternatives. 
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The data presented here indicate that a concurrent strength and endurance training intervention is an 
effective training paradigm for improving economy, time trial performance and strength phenotypes in elite 
adolescent middle distance athletes. These performance gains were coupled with improvements in RE. 
Strength and explosive indices including CMJ and vertical stiffness were improved, and these increases were 
correlated with improvements in time trial performance. Furthermore, slow stretch-shortening cycle orientated 
plyometric training volume was related to magnitude of improvements in time trial performance. As such, it 
is reasonable to suggest that plyometric type training also contributed to the improvements in performance. 
 
As stated throughout this is an observational account of a real-world intervention implemented in a group of 
highly trained adolescent middle distance athletes. As such, there are limitations here. The 8-week 
intervention was relatively short and took place following a 4-week detraining period, as such any 
improvements in performance may have been exacerbated due to the prior detraining of the athletes. In 
addition, there was no control group with which to compare any changes in performance with those who were 
exposed to the concurrent strength and endurance training intervention. 
 
CONCLUSIONS 
 
To optimize performance gains practitioners supporting adolescent middle-distance athletes should consider 
implementing strength training which includes plyometric activity concurrent to middle distance training. To 
maximize the benefits of any strength training performed practitioners should consider implementing this in 
periods in which high volumes of low intensity endurance training are not required. 
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