Percentile curves and reference values for 2000-m rowing ergometer performance time in international rowers aged 14-70 years
DOI:
https://doi.org/10.14198/jhse.2018.134.02Keywords:
Aging human, Exercise performance, Fitness assessment, Rowing performance, Talent developmentAbstract
The aim of this study was to provide percentile curves and reference values for the performance in 2000-m maximal effort on rowing ergometer. A cross-sectional study was carried out with a non-probabilistic sample (n=15420) obtained from an on-line ranking of indoor rowing and made from results between 2010 and 2014 recorded in 2000-m official races. Percentile curves and reference values were calculated using Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a transformation of data to Box-Cox Power Exponential distribution and cubic splines as smoothing technique with age as the explanatory variable. This study is the first to present percentile curves and reference data to evaluate 2000-m performance time (indirect measure of mechanical power) in rowing ergometer depending on age (14-70) for both sexes and body-mass classifications (light- and heavyweight rowers). These curves and values are of interest in assessing indoor rowing performance and in measuring the specific physical condition of rowers in 2000-m regattas on-water. Percentiles also can be useful to predict performance levels in oncoming ages.
Funding
The second author was supported by the Grant MTM2014-55966-P of the Spanish Ministry of Economy and Competitiveness.Downloads
References
Akça, F. (2014). Prediction of Rowing Ergometer Performance from Functional Anaerobic Power, Strength and Anthropometric Components. Journal of human kinetics, 41(1), 133-142. https://doi.org/10.2478/hukin-2014-0041
Borghi, E., de Onis, M., Garza, C., Van den Broeck, J., Frongillo, E. A., Grummer-Strawn, L., Van Buuren, S., Pan, H., Molinari, L., Martorell, R., Onyango, A. W. and Martines, J. C. (2006). Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Statistics in medicine, 25(2), 247-265. https://doi.org/10.1002/sim.2227
Bourdin, M., Messonnier, L., Hager, J. P., & Lacour, J. R. (2004). Peak power output predicts rowing ergometer performance in elite male rowers. International journal of sports medicine, 25(5), 368-373. https://doi.org/10.1055/s-2004-815844
Buuren, S. V. & Fredriks, M. (2001). Worm plot: a simple diagnostic device for modelling growth reference curves. Statistics in medicine, 20(8), 1259-1277. https://doi.org/10.1002/sim.746
Cosgrove, M. J., Wilson, J., Watt, D. & Grant, S. F. (1999). The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. Journal of Sports Sciences, 17(11), 845-852. http://dx.doi.org/10.1080/026404199365407
Guével, Boyas, Nordez & Cornu (2006). Power responses of a rowing ergometer: mechanical sensors vs. Concept2® measurement system. Int J Sports Med, 27, 830-833. http://dx.doi.org/10.1055/s-2006-923774
de Campos Mello, F., de Moraes Bertuzzi, R. C., Grangeiro, P. M. & Franchini, E. (2009). Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water. European journal of applied physiology, 107(5), 615-619. http://dx.doi.org/10.1007/s00421-009-1172-9
Hagerman, F. C. (1984). Applied physiology of rowing. Sports Medicine, 1(4), 303-326. http://dx.doi.org/10.2165/00007256-198401040-00005
Hawkins, S. A. & Wiswell, R. A. (2003). Rate and mechanism of maximal oxygen consumption decline with aging. Sports Medicine, 33(12), 877-888. http://dx.doi.org/10.2165/00007256-200333120-00002
Huang, C. J., Nesser, T. W., & Edwards, J. E. (2007). Strength and power determinants of rowing performance. Journal of Exercise Physiology online, 10(4).
Ingham, S., Whyte, G., Jones, K. & Nevill, A. (2002). Determinants of 2,000 m rowing ergometer performance in elite rowers. European journal of applied physiology, 88(3), 243-246. http://dx.doi.org/10.1007/s00421-002-0699-9
Kerr, D. A., Ross, W. D., Norton, K., Hume, P., Kagawa, M. & Ackland, T. R. (2007). Olympic lightweight and open-class rowers possess distinctive physical and proportionality characteristics. Journal of Sports Sciences, 25(1), 43-53. http://dx.doi.org/10.1080/02640410600812179
Kleshnev, V. (2010). Boat acceleration, temporal structure of the stroke cycle, and effectiveness in rowing. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 224(1), 63-74. https://doi.org/10.1243/17543371JSET40
Klusiewicz, A. & Faff, J. (2003). Indirect methods of estimating maximal oxygen uptake on the rowing ergometer. Biology of Sport, 20(3), 181-194.
Lacour, J. R., Messonnier, L. & Bourdin, M. (2009). Physiological correlates of performance. Case study of a world-class rower. European journal of applied physiology, 106(3), 407-413. https://doi.org/10.1007/s00421-009-1028-3
Mäestu, J., Jürimäe, J. & Jürimäe, T. (2005). Monitoring of performance and training in rowing. Sports Medicine, 35(7), 597-617. https://doi.org/10.2165/00007256-200535070-00005
Mikulić, P., Smoljanović, T., Bojanić, I., Hannafin, J. A., & Matković, B. R. (2009). Relationship between 2000-m rowing ergometer performance times and World Rowing Championships rankings in elite-standard rowers. Journal of sports sciences, 27(9), 907-913. https://doi.org/10.1080/02640410902911950
Nevill, A. M., Allen, S. V. & Ingham, S. A. (2011). Modelling the determinants of 2000 m rowing ergometer performance: a proportional, curvilinear allometric approach. Scandinavian journal of medicine & science in sports, 21(1), 73-78. http://dx.doi.org/10.1111/j.1600-0838.2009.01025.x
Nybo, L., Schmidt, J. F., Fritzdorf, S. & Nordsborg, N. B. (2014). Physiological characteristics of an aging olympic athlete. Medicine and science in sports and exercise, 46(11), 2132-2138. https://doi.org/10.1249/MSS.0000000000000331
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rigby, R. A., & Stasinopoulos, D. M. (2006). Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis. Statistical Modelling, 6(3), 209-229. http://doi.org/10.1191/1471082X06st122oa
Rubin, R. T. & Rahe, R. H. (2010). Effects of aging in Masters swimmers: 40-year review and suggestions for optimal health benefits. Open access journal of sports medicine, 1, 39. http://doi.org/10.2147/OAJSM.S37718
Secher, N. H. (1983). The physiology of rowing. Journal of Sports Sciences,1(1), 23-53. http://doi.org/10.1080/02640418308729658
Seiler, K. S., Spirduso, W. W., & Martin, J. C. (1998). Gender differences in rowing performance and power with aging. Medicine and science in sports and exercise, 30(1), 121-127. http://doi.org/10.1097/00005768-199801000-00017
Shephard, R. J. (1998). Science and medicine of rowing: a review. Journal of Sports Sciences, 16(7), 603-620. http://doi.org/10.1080/026404198366416
Smith, T. B. & Hopkins, W. G. (2012). Measures of rowing performance. Sports Medicine, 42(4), 343-358. http://doi.org/10.2165/11597230-000000000-00000
Soper, C. & Hume, P. A. (2004). Towards an ideal rowing technique for performance: The contributions from biomechanics. Sports Medicine, 34(12), 825-848. http://doi.org/10.2165/00007256-200434120-00003
Stasinopoulos, D. M. & Rigby, R. A. (2007). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1-46. https://doi.org/10.18637/jss.v023.i07
Steinacker, J. M. (1993). Physiological aspects of training in rowing. Evaluation,47(57), 60-62.
Van Holst, M. (2012). On rowing. URL http://home.hccnet.nl/m.holst/RoeiWeb.html
Vogler, A. J., Rice, A. J. & Withers, R. T. (2007). Physiological responses to exercise on different models of the concept II rowing ergometer. International Journal of Sports Physiology and Performance, 2(4), 360. http://doi.org/10.1123/ijspp.2.4.360
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.