Effects of an incremental maximal endurance exercise stress-induced cortisol on cognitive performance

Authors

  • Jose Luis Bermejo University of Valencia, Spain
  • Bruno Ribeiro do Couto University of Murcia, Spain
  • Adrià Marco-Ahulló Vall d'Hebron Research Institute, Spain
  • Israel Villarrasa-Sapiña University of Valencia, Spain
  • Xavier Garcia-Masso University of Valencia, Spain

DOI:

https://doi.org/10.14198/jhse.2019.143.13

Keywords:

Exercise, Stress, Fatigue, Cognitive functions, Cortisol

Abstract

Objectives: It can be hypothesized that cognitive performance decreases after fatigue protocol when it coincides with the maximum peak of cortisol. The first aim of this study was to elucidate the effects of a single bout of high intensity exercise on behavioural (i.e., attention and memory) and physiological (i.e., salivary cortisol) responses. The second objective was to evaluate the effect of the performance of the cognitive tasks on cortisol levels. Methods: Thirty-four physically active men (at least 5 days/week of physical activity practice) 38.11 (1.57) years old completed a maximal incremental protocol on a treadmill by running until they reached a state of stress. Salivary cortisol and cognitive functions were evaluated in counterbalanced order prior and following exercise-induced stress. Results: Results showed lower cortisol levels before exercise and higher cortisol values before the cognitive task. Indeed, exercise-induced stress had only a detrimental effect on attention without any impact on declarative memory and finding improvements on working memory performance. Conclusion: The effects of stress on cognitive performance depending on the main brain areas responsible of cognitive functions (i.e., prefrontal cortex and hippocampus) and time elapsed between the cessation of exercise and the evaluation of these.

Downloads

Download data is not yet available.

References

Almela, M., van der Meij, L., Hidalgo, V., Villada, C., & Salvador, A. (2012). The cortisol awakening response and memory performance in older men and women. Psychoneuroendocrinology, 37(12), 1929–1940. https://doi.org/10.1016/j.psyneuen.2012.04.009

Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychol. (Amst.), 129(3), 410–419. https://doi.org/10.1016/j.actpsy.2008.09.006

Baddeley, A. (1992). Working Memory: The Interface between Memory and Cognition. J. Cogn. Neurosci., 4(3), 281–288. https://doi.org/10.1162/jocn.1992.4.3.281

Basner, M., & Dinges, D. F. (2011). Maximizing Sensitivity of the Psychomotor Vigilance Test (PVT) to Sleep Loss. Sleep, 34(5), 581–591. https://doi.org/10.1093/sleep/34.5.581

Bermejo, J. L., García-Massó, X., Paillard, T., & Noé, F. (2018). Fatigue does not conjointly alter postural and cognitive performance when standing in a shooting position under dual-task conditions. J. Sports Sci., 36(4), 429–435.

Bourne Jr, L. E., & Yaroush, R. A. (2003). Stress and cognition: A cognitive psychological perspective.

Butler, K., Klaus, K., Edwards, L., & Pennington, K. (2017). Elevated cortisol awakening response associated with early life stress and impaired executive function in healthy adult males. Horm. Behav., 95(Supplement C), 13–21. https://doi.org/10.1016/j.yhbeh.2017.07.013

Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res., 1453(Supplement C), 87–101. https://doi.org/10.1016/j.brainres.2012.02.068

Chang, Y.-K., Tsai, C.-L., Huang, C.-C., Wang, C.-C., & Chu, I.-H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? J. Sci. Med. Sport, 17(1), 51–55. https://doi.org/10.1016/j.jsams.2013.02.007

Cian, C., Barraud, P. A., Melin, B., & Raphel, C. (2001). Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int. J. Psychophysiol., 42(3), 243–251. https://doi.org/10.1016/S0167-8760(01)00142-8

Cioncoloni, D., Galli, G., Mazzocchio, R., Feurra, M., Giovannelli, F., Santarnecchi, E., … Rossi, S. (2014). Differential effects of acute cortisol administration on deep and shallow episodic memory traces: A study on healthy males. Neurobiol. Learn. Mem., 114, 186–192. https://doi.org/10.1016/j.nlm.2014.06.007

Crabbe, J. B., & Dishman, R. K. (2004). Brain electrocortical activity during and after exercise: a quantitative synthesis. Psychophysiology, 41(4), 563–574. https://doi.org/10.1111/j.1469-8986.2004.00176.x

Dickerson, S. S., & Kemeny, M. E. (2004). Acute Stressors and Cortisol Responses: A Theoretical Integration and Synthesis of Laboratory Research. Psychol. Bull., 130(3), 355–391. https://doi.org/10.1037/0033-2909.130.3.355

Dietrich, A., & Audiffren, M. (2011). The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci. Biobehav. Rev., 35(6), 1305–1325. https://doi.org/10.1016/j.neubiorev.2011.02.001

Dorrian, J., Rogers, N., & Dinges, D. (2005). Psychomotor Vigilance Performance: Neurocognitive Assay Sensitive to Sleep Loss (Vol. 193).

Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of Cognitive Control during and after Walking in Preadolescent Children: Med. Sci. Sports Exerc., 44(10), 2017–2024. https://doi.org/10.1249/MSS.0b013e318258bcd5

Duclos, Corcuff, Arsac, Moreau-Gaudry, Rashedi, Roger, … Manier. (1998). Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin. Endocrinol. (Oxf.), 48(4), 493–501. https://doi.org/10.1046/j.1365-2265.1998.00334.x

Elzinga, B. M., & Roelofs, K. (2005). Cortisol-Induced Impairments of Working Memory Require Acute Sympathetic Activation. Behav. Neurosci., 119(1), 98–. https://doi.org/10.1037/0735-7044.119.1.98

Engel, F., Härtel, S., Strahler, J., Wagner, M. O., Bös, K., & Sperlich, B. (2014). Hormonal, Metabolic, and Cardiorespiratory Responses of Young and Adult Athletes to a Single Session of High-Intensity Cycle Exercise. Pediatr. Exerc. Sci., 26(4), 485–494. https://doi.org/10.1123/pes.2013-0152

Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychol. Rev., 102(2), 211–245. https://doi.org/10.1037/0033-295X.102.2.211

Gaydos, S. J., Curry, I. P., & Bushby, A. J. (2013). Fatigue Assessment: Subjective Peer-to-Peer Fatigue Scoring (Reprint). Army Aeromedical Research Lab Fort Rucker Al Warfighter Health Div. https://doi.org/10.3357/ASEM.3728.2013

Guenzel, F. M., Wolf, O. T., & Schwabe, L. (2014). Glucocorticoids boost stimulus-response memory formation in humans. Psychoneuroendocrinology, 45(Supplement C), 21–30. https://doi.org/10.1016/j.psyneuen.2014.02.015

Heaney, J. L. J., Carroll, D., & Phillips, A. C. (2013). DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. AGE, 35(2), 395–405. https://doi.org/10.1007/s11357-011-9345-y

Heijnen, S., Hommel, B., Kibele, A., & Colzato, L. S. (2016). Neuromodulation of Aerobic Exercise—A Review. Front. Psychol., 6. https://doi.org/10.3389/fpsyg.2015.01890

Henckens, M. J. A. G., Wingen, V., A, G., Joëls, M., & Fernández, G. (2012). Time-dependent effects of cortisol on selective attention and emotional interference: a functional MRI study. Front. Integr. Neurosci., 6. https://doi.org/10.3389/fnint.2012.00066

Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044–. https://doi.org/10.1016/j.neuroscience.2009.01.057

Hsieh, S.-S., Chang, Y.-K., Hung, T.-M., & Fang, C.-L. (2016). The effects of acute resistance exercise on young and older males' working memory. Psychol. Sport Exerc., 22(Supplement C), 286–293. https://doi.org/10.1016/j.psychsport.2015.09.004

Jansma, J., Ramsey, N., Slagter, H., & S. Kahn, R. (2001). Functional Anatomical Correlates of Controlled and Automatic Processing (Vol. 13). https://doi.org/10.1162/08989290152541403

Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S., & Krugers, H. J. (2006). Learning under stress: how does it work? Trends Cogn. Sci., 10(4), 152–158. https://doi.org/10.1016/j.tics.2006.02.002

Koch, K., Wagner, G., von Consbruch, K., Nenadic, I., Schultz, C., Ehle, C., … Schlösser, R. (2006). Temporal changes in neural activation during practice of information retrieval from short-term memory: An fMRI study. Brain Res., 1107(1), 140–150. https://doi.org/10.1016/j.brainres.2006.06.003

Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2–18. https://doi.org/10.1016/j.psyneuen.2008.10.004

Labsy, Z., Prieur, F., Panse, B. L., Do, M.-C., Gagey, O., Lasne, F., & Collomp, K. (2013). The diurnal patterns of cortisol and dehydroepiandrosterone in relation to intense aerobic exercise in recreationally trained soccer players. Stress, 16(2), 261–265. https://doi.org/10.3109/10253890.2012.707259

Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res., 1341(Supplement C), 12–24. https://doi.org/10.1016/j.brainres.2010.03.091

Magnié, M.-N., Bermon, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369–377. https://doi.org/10.1111/1469-8986.3730369

McMorris, T., Davranche, K., Jones, G., Hall, B., Corbett, J., & Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. Int. J. Psychophysiol., 73(3), 334–340. https://doi.org/10.1016/j.ijpsycho.2009.05.004

Milham, M. P., Banich, M. T., Claus, E. D., & Cohen, N. J. (2003). Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage Amst., 18(2), 483–493. https://doi.org/10.1016/S1053-8119(02)00050-2

Morgan, C. A., Doran, A., Steffian, G., Hazlett, G., & Southwick, S. M. (2006). Stress-Induced Deficits in Working Memory and Visuo-Constructive Abilities in Special Operations Soldiers. Biol. Psychiatry, 60(7), 722–729. https://doi.org/10.1016/j.biopsych.2006.04.021

Morgan, C. A., Russell, B., McNeil, J., Maxwell, J., Snyder, P. J., Southwick, S. M., & Pietrzak, R. H. (2011). Baseline Burnout Symptoms Predict Visuospatial Executive Function During Survival School Training in Special Operations Military Personnel. J. Int. Neuropsychol. Soc., 17(3), 494–501. https://doi.org/10.1017/S1355617711000221

Nicolson, N. (2008). Measurement of Cortisol.

Nieman, D. C., Miller, A. R., Henson, D. A., Warren, B. J., Gusewitch, G., Johnson, R. L., … Nehlsen-Cannarella, S. L. (1994). Effect of High- Versus Moderate-Intensity Exercise on Lymphocyte Subpopulations and Proliferative Response. Int. J. Sports Med., 15(04), 199–206. https://doi.org/10.1055/s-2007-1021047

Quesada, A. A., Wiemers, U. S., Schoofs, D., & Wolf, O. T. (2012). Psychosocial stress exposure impairs memory retrieval in children. Psychoneuroendocrinology, 37(1), 125–136. https://doi.org/10.1016/j.psyneuen.2011.05.013

Roozendaal, B., Okuda, S., Zee, E. A. V. der, & McGaugh, J. L. (2006). Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci., 103(17), 6741–6746. https://doi.org/10.1073/pnas.0601874103

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing. Detect. Search Atten. Psychol. Rev., 1–66.

Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33(5), 643–653. https://doi.org/10.1016/j.psyneuen.2008.02.004

Soga, K., Shishido, T., & Nagatomi, R. (2015). Executive function during and after acute moderate aerobic exercise in adolescents. Psychol. Sport Exerc., 16(Part 3), 7–17. https://doi.org/10.1016/j.psychsport.2014.08.010

Stoelting, R. K., & Hillier, S. C. (2012). Pharmacology and Physiology in Anesthetic Practice. Lippincott Williams & Wilkins.

Sudo, M., Komiyama, T., Aoyagi, R., Nagamatsu, T., Higaki, Y., & Ando, S. (2017). Executive function after exhaustive exercise. Eur. J. Appl. Physiol., 117(10), 2029–2038. https://doi.org/10.1007/s00421-017-3692-z

Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and Children's Intelligence, Cognition, and Academic Achievement. Educ. Psychol. Rev., 20(2), 111. https://doi.org/10.1007/s10648-007-9057-0

Tsai, C.-L., Wang, C.-H., Pan, C.-Y., Chen, F.-C., Huang, T.-H., & Chou, F.-Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci., 8. https://doi.org/10.3389/fnbeh.2014.00262

van Ast, V. A., Cornelisse, S., Marin, M.-F., Ackermann, S., Garfinkel, S. N., & Abercrombie, H. C. (2013). Modulatory mechanisms of cortisol effects on emotional learning and memory: Novel perspectives. Psychoneuroendocrinology, 38(9), 1874–1882. https://doi.org/10.1016/j.psyneuen.2013.06.012

van Enkhuizen, J., Acheson, D., Risbrough, V., Drummond, S., Geyer, M. A., & Young, J. W. (2014). Sleep deprivation impairs performance in the 5-choice continuous performance test: Similarities between humans and mice. Behav. Brain Res., 261(Supplement C), 40–48. https://doi.org/10.1016/j.bbr.2013.12.003

Veld, D. M. J. de, Riksen-Walraven, J. M., & Weerth, C. de. (2014). Acute psychosocial stress and children's memory. Stress, 17(4), 305–313. https://doi.org/10.3109/10253890.2014.919446

Vining, R. F., & McGinley, R. A. (1987). The measurement of hormones in saliva: Possibilities and pitfalls. J. Steroid Biochem., 27(1), 81–94. https://doi.org/10.1016/0022-4731(87)90297-4

Viru, A. (1992). Plasma Hormones and Physical Exercise. Int. J. Sports Med., 13(03), 201–209. https://doi.org/10.1055/s-2007-1021254

Wahl, P., Zinner, C., Achtzehn, S., Bloch, W., & Mester, J. (2010). Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm. IGF Res., 20(5), 380–385. https://doi.org/10.1016/j.ghir.2010.08.001

Wilkinson, R. T., & Houghton, D. (1982). Field Test of Arousal: A Portable Reaction Timer with Data Storage. Hum. Factors, 24(4), 487–493. https://doi.org/10.1177/001872088202400409

Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Res., 1293(Supplement C), 142–154. https://doi.org/10.1016/j.brainres.2009.04.013

Statistics

Statistics RUA

Published

2019-09-02

How to Cite

Bermejo, J. L., Ribeiro do Couto, B., Marco-Ahulló, A., Villarrasa-Sapiña, I., & Garcia-Masso, X. (2019). Effects of an incremental maximal endurance exercise stress-induced cortisol on cognitive performance. Journal of Human Sport and Exercise, 14(3), 632–644. https://doi.org/10.14198/jhse.2019.143.13

Issue

Section

Articles

Most read articles by the same author(s)