Methodological validation of a vertical ladder with low intensity shock stimulus for resistance training in C57BL/6 mice: Effects on muscle mass and strength, body composition, and lactate plasma levels

Vinicius Dias Rodrigues, Daniel de Moraes Pimentel, Andréia de Souza Brito, Magda Mendes Vieira, Amanda Rodrigues Santos, Amanda Souto Machado, Lorrane Katherine Martins Pereira, Fernanda Santos Soares, Emisael Stênio Batista Gomes, Mariana Rocha Alves, Ludmilla Regina de Souza, Ricardo Cardoso Cassilhas, Renato Sobral Monteiro Júnior, Alfredo Maurício Batista De-Paula

Abstract

The objective of this study was to evaluate the effects of a vertical ladder device for resistance exercises with or without electrical shock stimulus on muscle strength, body composition, limb volume, muscle fibres and plasma lactate and glycemia of female mice. This device is represented by a vertical ladder with electrostimulation. It was analysed in groups of C57BL/6 mice practicing spontaneous physical activity in enriched environment, practicing resisted climbing exercises, practicing resistance exercises with the utility model in question and controls. The acute effects of blood lactate and dark light-box behaviour, and the short-term chronic effects of muscle strength, limb volume, body composition, muscle fibre area, and central and light-dark quantification were verified. According to the findings, the vertical electrostimulation ladder model presented acute effects on lactate levels, similar to other experimental models of resistance exercise and physical activity. The behaviour in the light-dark box test showed no difference between the groups. Regarding the short-term chronic response, the best results were obtained in the impact-stimulated resistive exercise in the limb traction muscle variables, greater brown adipose tissue weight, greater quadriceps femoral muscle structure, limb and greater weight number of nuclei in the skeletal striated muscle fibres. The use of the prototype showed similarities in the acute and chronic adaptations expected in resistance training. However, new study proposals should be encouraged, as the data presented here are the first notes on the use of this utility model.


Keywords

Resistance exercise; Physical exercise; Rodents; Shock; Climbing

References

Brooks, G. A. (1991). Current concepts in lactate exchange. Medicine and science in sports and exercise, 23(8), 895-906. https://doi.org/10.1249/00005768-199108000-00003

Campos, A. C., Fogaca, M. V., Aguiar, D. C., & Guimaraes, F. S. (2013). Animal models of anxiety disorders and stress. Revista brasileira de psiquiatria, 35, S101-S111. https://doi.org/10.1590/1516-4446-2013-1139

Cassilhas, R., Lee, K., Fernandes, J., Oliveira, M., Tufik, S., Meeusen, R., & De Mello, M. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309-317. https://doi.org/10.1016/j.neuroscience.2011.11.029

Cassilhas, R. C., Lee, K. S., Venancio, D. P., Oliveira, M. G. M. d., Tufik, S., & Mello, M. T. d. (2012). Resistance exercise improves hippocampus-dependent memory. Brazilian Journal of Medical and Biological Research, 45(12), 1215-1220. https://doi.org/10.1590/S0100-879X2012007500138

Cassilhas, R. C., Reis, I. T., Venâncio, D., Fernandes, J., Tufik, S., & Mello, M. T. d. (2013). Animal model for progressive resistance exercise: a detailed description of model and its implications for basic research in exercise. Motriz: Revista de Educação Física, 19(1), 178-184. https://doi.org/10.1590/S1980-65742013000100018

Close, B., Banister, K., Baumans, V., Bernoth, E.-M., Bromage, N., Bunyan, J., . . . Hackbarth, H. (1996). Recommendations for euthanasia of experimental animals: Part 1. Laboratory Animals, 30(4), 293-316. https://doi.org/10.1258/002367796780739871

Coletti, D., Aulino, P., Pigna, E., Barteri, F., Moresi, V., Annibali, D., . . . Berardi, E. (2016). Spontaneous physical activity downregulates pax7 in cancer cachexia. Stem cells international, 2016. https://doi.org/10.1155/2016/6729268

Crawley, J. N., Marangos, P. J., Paul, S. M., Skolnick, P., & Goodwin, F. K. (1981). Interaction between purine and benzodiazepine: Inosine reverses diazepam-induced stimulation of mouse exploratory behavior. Science, 211(4483), 725-727. https://doi.org/10.1126/science.6256859

De Luca, A., Tinsley, J., Aartsma-Rus, A., van Putten, M., Nagaraju, K., de La Porte, S., . . . Carlson, G. (2008). Use of grip strength meter to assess the limb strength of mdx mice. SOP DMD_M, 2(001).

De Matteis, R., Lucertini, F., Guescini, M., Polidori, E., Zeppa, S., Stocchi, V., . . . Cuppini, R. (2013). Exercise as a new physiological stimulus for brown adipose tissue activity. Nutrition, metabolism and cardiovascular diseases, 23(6), 582-590. https://doi.org/10.1016/j.numecd.2012.01.013

Dyce, K. M., Sack, W. O., & Wensing, C. J. G. (2009). Textbook of Veterinary Anatomy-E-Book: Elsevier Health Sciences.

Dyce, K. M., Wensing, C., & Sack, W. (2004). Tratado de anatomia veterinária: Elsevier Brasil.

Foster, F. S., Pavlin, C. J., Harasiewicz, K. A., Christopher, D. A., & Turnbull, D. H. (2000). Advances in ultrasound biomicroscopy. Ultrasound in medicine & biology, 26(1), 1-27. https://doi.org/10.1016/S0301-5629(99)00096-4

Fulk, L., Stock, H., Lynn, A., Marshall, J., Wilson, M., & Hand, G. (2004). Chronic physical exercise reduces anxiety-like behavior in rats. International journal of sports medicine, 25(01), 78-82. https://doi.org/10.1055/s-2003-45235

Gentil, P., Oliveira, E., Fontana, K., Molina, G., Oliveira, R. J. d., & Bottaro, M. (2006). Efeitos agudos de vários métodos de treinamento de força no lactato sanguíneo e características de cargas em homens treinados recreacionalmente. Rev bras med esporte, 12(6), 303-307. https://doi.org/10.1590/S1517-86922006000600001

Haff, G., & Triplett, N. T. (2015). Essentials of strength training and conditioning.

Hansen, P. A., Han, D. H., Nolte, L. A., Chen, M., & Holloszy, J. O. (1997). DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 273(5), R1704-R1708. https://doi.org/10.1152/ajpregu.1997.273.5.R1704

Honors, M. A., & Kinzig, K. P. (2014). Chronic exendin-4 treatment prevents the development of cancer cachexia symptoms in male rats bearing the Yoshida sarcoma. Hormones and Cancer, 5(1), 33-41. https://doi.org/10.1007/s12672-013-0163-9

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine+ Science in Sports+ Exercise, 41(1), 3. https://doi.org/10.1249/MSS.0b013e31818cb278

Hornberger Jr, T. A., & Farrar, R. P. (2004). Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Canadian journal of applied physiology, 29(1), 16-31. https://doi.org/10.1139/h04-002

Hutchinson, E., Avery, A., & VandeWoude, S. (2005). Environmental enrichment for laboratory rodents. ILAR journal, 46(2), 148-161. https://doi.org/10.1093/ilar.46.2.148

Kadi, F., & Thornell, L.-E. (2000). Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochemistry and Cell Biology, 113(2), 99-103. https://doi.org/10.1007/s004180050012

Kenney, W. L., Wilmore, J., & Costill, D. (2015). Physiology of Sport and Exercise 6th Edition: Human kinetics.

Klingenspor, M., Bast, A., Bolze, F., Li, Y., Maurer, S., Schweizer, S., . . . Fromme, T. (2017). Brown adipose tissue. In Adipose Tissue Biology (pp. 91-147): Springer. https://doi.org/10.1007/978-3-319-52031-5_4

Krüger, K., Gessner, D. K., Seimetz, M., Banisch, J., Ringseis, R., Eder, K., . . . Mooren, F. C. (2013). Functional and muscular adaptations in an experimental model for isometric strength training in mice. PloS one, 8(11), e79069. https://doi.org/10.1371/journal.pone.0079069

König, H. E., & Liebich, H.-G. (2016). Anatomia dos Animais Domésticos-: Texto e Atlas Colorido: Artmed Editora.

Magbanua, M. J. M., Richman, E. L., Sosa, E. V., Jones, L. W., Simko, J., Shinohara, K., . . . Chan, J. M. (2014). Physical activity and prostate gene expression in men with low-risk prostate cancer. Cancer Causes & Control, 25(4), 515-523. https://doi.org/10.1007/s10552-014-0354-x

Medicine, A. C. o. S. (2002). Progression models in resistance training for healthy adults. Med Sci Spor Exerc, 34, 364-380. https://doi.org/10.1097/00005768-200202000-00027

Morgan, W. P. (1985). Affective beneficence of vigorous physical activity. Medicine & Science in Sports & Exercise. https://doi.org/10.1249/00005768-198502000-00015

Mori, T., Okimoto, N., Sakai, A., Okazaki, Y., Nakura, N., Notomi, T., & Nakamura, T. (2003). Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. Journal of bone and mineral research, 18(11), 2002-2009. https://doi.org/10.1359/jbmr.2003.18.11.2002

Netter, F. H. (2008). Netter-Atlas de anatomia humana: Elsevier Brasil.

Newberry, R. C. (1995). Environmental enrichment: increasing the biological relevance of captive environments. Applied Animal Behaviour Science, 44(2-4), 229-243. https://doi.org/10.1016/0168-1591(95)00616-Z

Nuzzo, R. (2014). Scientific method: statistical errors. Nature News, 506(7487), 150. https://doi.org/10.1038/506150a

Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M., & Schiaffino, S. (2002). A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proceedings of the National Academy of Sciences, 99(14), 9213-9218. https://doi.org/10.1073/pnas.142166599

Portney, L. G., & Watkins, M. P. (2000). Foundations of clinical research: applications to practice: Prentice Hall.

Raglin, J., & Wilson, M. (1996). State anxiety following 20 minutes of bicycle ergometer exercise at selected intensities. International journal of sports medicine, 17(06), 467-471. https://doi.org/10.1055/s-2007-972880

Ratamess, N., Alvar, B., & Evetoch, T. (2009). Progression models in resistance training for healthy adults. American college of sports medicine. Med Sci Sports Exerc, 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670

Roemers, P., Mazzola, P., De Deyn, P., Bossers, W., van Heuvelen, M., & van der Zee, E. (2017). Burrowing as a Novel Voluntary Strength Training Method for Mice: A Comparison Of Various Voluntary Strength or Resistance Exercise Methods. Journal of Neuroscience Methods.

Scheffer, D. L., Silva, L. A., Tromm, C. B., da Rosa, G. L., Silveira, P. C., de Souza, C. T., . . . Pinho, R. A. (2012). Impact of different resistance training protocols on muscular oxidative stress parameters. Applied Physiology, Nutrition, and Metabolism, 37(6), 1239-1246. https://doi.org/10.1139/h2012-115

Schnyder, S., & Handschin, C. (2015). Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone, 80, 115-125. https://doi.org/10.1016/j.bone.2015.02.008

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychological bulletin, 86(2), 420. https://doi.org/10.1037/0033-2909.86.2.420

Soltow, Q. A., Betters, J. L., Sellman, J. E., Lira, V. A., Long, J. H., & Criswell, D. S. (2006). Ibuprofen inhibits skeletal muscle hypertrophy in rats. Medicine and science in sports and exercise, 38(5), 840. https://doi.org/10.1249/01.mss.0000218142.98704.66

Spiering, B. A., Kraemer, W. J., Anderson, J. M., Armstrong, L. E., Nindl, B. C., Volek, J. S., & Maresh, C. M. (2008). Resistance exercise biology. Sports Medicine, 38(7), 527-540. https://doi.org/10.2165/00007256-200838070-00001

Stanford, K. I., Middelbeek, R. J., & Goodyear, L. J. (2015). Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes, 64(7), 2361-2368. https://doi.org/10.2337/db15-0227

Takeshita, H., Yamamoto, K., Nozato, S., Inagaki, T., Tsuchimochi, H., Shirai, M., . . . Yokoyama, S. (2017). Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Scientific Reports, 7. https://doi.org/10.1038/srep42323

Terra, R., Alves, P., Gonçalves da Silva, S., Salerno, V., & Dutra, P. (2012). Exercise Improves the Th1 Response by Modulating Cytokine and NO Production in BALB/c Mice. Int J Sports Med, 10, 0032-1329992. https://doi.org/10.1055/s-0032-1329992

Van de Weerd, H. A., Aarsen, E. L., Mulder, A., Kruitwagen, C. L., Hendriksen, C. F., & Baumans, V. (2002). Effects of environmental enrichment for mice: variation in experimental results. Journal of Applied Animal Welfare Science, 5(2), 87-109. https://doi.org/10.1207/S15327604JAWS0502_01

Velázquez, K. T., Enos, R. T., Narsale, A. A., Puppa, M. J., Davis, J. M., Murphy, E. A., & Carson, J. A. (2014). Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. The Journal of nutrition, 144(6), 868-875. https://doi.org/10.3945/jn.113.188367

Zatsiorsky, V. M., & Kraemer, W. J. (2006). Science and practice of strength training: Human Kinetics.




DOI: https://doi.org/10.14198/jhse.2019.143.12





License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/