Acute inflammatory responses to high-intensity functional training programming: An observational study


  • Brian Kliszczewicz Kennesaw State University, United States
  • Chad D. Markert Winston-Salem State University, United States
  • Emily Bechke Kennesaw State University, United States
  • Cassie Williamson Kennesaw State University, United States
  • Khala N. Clemons Winston-Salem State University, United States
  • Ronald L. Snarr Georgia Southern University, United States
  • Michael J. McKenzie Appalachain State University, United States



Interleukin 6, Interleukin 10, TNF- α, Acute exercise, Acute resistance exercise


Effects of varying types of short duration workouts in high-intensity functional training (HIFT) on inflammatory biomarkers have not been adequately characterized. Objectives: The purpose of this descriptive study was to examine the acute effects of HIFT workouts on biomarkers of inflammation, over time, in two HIFT bouts. Materials and Methods: Ten apparently healthy males (28.1 ± 5 yrs) completed two HIFT sessions (“short bout:” sub-5-minute vs. “long bout:” 15-minute) in a randomized crossover design. Blood was drawn pre and post-exercise, and 1 hour, 3 hours, and 6 hours post-exercise, centrifuged, and plasma frozen for analysis. Inflammation was assessed through plasma interleukin-6 (IL-6), interleukin-10 (IL-10), and tumour necrosis factor alpha (TNF-α). Results: Repeated measures ANOVA revealed a single trial-dependent difference (IL-6, p≤ 0.05), and while statistically significant, this difference may not be biologically significant. The biomarkers IL-6, IL-10, and TNF-α all follow a similar pattern of peaking post-exercise and returning to baseline within 6 hours in both trials. Conclusions: Both temporal responses and concentrations were similar in the short and long bout. A practical implication is that both bouts of a HIFT elicit certain specific physiologic inflammatory responses.


Download data is not yet available.


Benatti, F. B., & Pedersen, B. K. (2015). Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol, 11(2), 86-97.

Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985), 98(6), 1985-1990.

Carlson, B. M., & Faulkner, J. A. (1983). The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc, 15(3), 187-198.

Charles, P., Elliott, M. J., Davis, D., Potter, A., Kalden, J. R., Antoni, C., . . . Maini, R. N. (1999). Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol, 163(3), 1521-1528.

Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., . . . Gherardi, R. K. (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell, 18(4), 1397-1409.

Cullen, T., Thomas, A. W., Webb, R., & Hughes, M. G. (2016). Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl Physiol Nutr Metab, 41(8), 803-808.

Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol, 37(2), 247-248.

Duchesne, E., Dufresne, S. S., & Dumont, N. A. (2017). Impact of Inflammation and Anti-inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Phys Ther, 97(8), 807-817.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods, 41(4), 1149-1160.

Faulkner, J. A., Brooks, S. V., & Opiteck, J. A. (1993). Injury to Skeletal-Muscle Fibers during Contractions - Conditions of Occurrence and Prevention. Phys Ther, 73(12), 911-921.

Feito, Y., Heinrich, K. M., Butcher, S. J., & Poston, W. S. C. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel), 6(3).

Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., . . . Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol (Lond), 575(3), 901-911.

Hartman, J., & Frishman, W. H. (2014). Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiol Rev, 22(3), 147-151.

Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. J appl physiol, 91(2), 534-551.

Heinrich, K. M., Becker, C., Carlisle, T., Gilmore, K., Hauser, J., Frye, J., & Harms, C. A. (2015). High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study. Eur J Cancer Care (Engl), 24(6), 812-817.

Heinrich, K. M., Patel, P. M., O'Neal, J. L., & Heinrich, B. S. (2014). High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health, 14, 789.

Huynh, A., Leong, K., Jones, N., Crump, N., Russell, D., Anderson, M., . . . Johnson, D. F. (2016). Outcomes of exertional rhabdomyolysis following high-intensity resistance training. Intern Med J, 46(5), 602-608.

Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol, 557(Pt 2), 571-582.

Keltz, E., Khan, F. Y., & Mann, G. (2013). Rhabdomyolysis. The role of diagnostic and prognostic factors. Muscles Ligaments Tendons J, 3(4), 303-312.

Kliszczewicz, B., Buresh, R., Bechke, E., & Williamson, C. (2017). Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. Journal of Human Sport and Exercise, 12(3), 710-718.

Kliszczewicz, B., Snarr, R., & Esco, M. (2014). Metabolic And Cardiovascular Response to the Crossfit Workout "Cindy": A Pilot Study. J Sport Human Perf, 2(2), 1-9.

Kliszczewicz, B., Williamson, C., Bechke, E., McKenzie, M., & Hoffstetter, W. (2018). Autonomic response to a short and long bout of high-intensity functional training. J Sports Sci, 36(16), 1872-1879.

Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J. (2017). Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J Strength Cond Res, 31(10), 2920-2937.

Leggate, M., Carter, W. G., Evans, M. J., Vennard, R. A., Sribala-Sundaram, S., & Nimmo, M. A. (2012). Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol (1985), 112(8), 1353-1360.

Monchanin, G., Serpero, L. D., Connes, P., Tripette, J., Wouassi, D., Bezin, L., . . . Martin, C. (2007). Effects of progressive and maximal exercise on plasma levels of adhesion molecules in athletes with sickle cell trait with or without alpha-thalassemia. J Appl Physiol (1985), 102(1), 169-173.

Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. J Physiol, 536(Pt 2), 329-337.

Perandini, L. A., Chimin, P., Lutkemeyer, D. D. S., & Camara, N. O. S. (2018). Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J.

Petersen, A. M. W., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. J appl physiol, 98(4), 1154-1162.

Reihmane, D., Jurka, A., Tretjakovs, P., & Dela, F. (2013). Increase in IL-6, TNF-alpha, and MMP-9, but not sICAM-1, concentrations depends on exercise duration. European J Appl Physiol, 113(4), 851-858.

Shephard, R. J. (2002). Cytokine responses to physical activity, with particular reference to IL-6: Sources, actions, and clinical implications. Crit Rev Immunol, 22(3), 165-182.

Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., & Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev, 8, 6-48.

Taniguchi, T., Koido, Y., Aiboshi, J., Yamashita, T., Suzaki, S., & Kurokawa, A. (1999). The ratio of interleukin-6 to interleukin-10 correlates with severity in patients with chest and abdominal trauma. Am J Emerg Med, 17(6), 548-551.

Thompson, W. R. (2017). Worldwide survey of fitness trends for 2018 The CREP Edition. Acsms Health & Fitness Journal, 21(6), 10-19.

Tidball, J. G. (1995). Inflammatory Cell Response to Acute Muscle Injury. Med Sci Sports Exerc, 27(7), 1022-1032.

Wadley, A. J., Chen, Y. W., Lip, G. Y., Fisher, J. P., & Aldred, S. (2016). Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J Sports Sci, 34(1), 1-9.

Yamada, M., Suzuki, K., Kudo, S., Totsuka, M., Nakaji, S., & Sugawara, K. (2002). Raised plasma G-CSF and IL-6 after exercise may play a role in neutrophil mobilization into the circulation. J Appl Physiol (1985), 92(5), 1789-1794.

Yang, W. J., & Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl, 13, 25-32.


Statistics RUA



How to Cite

Kliszczewicz, B., Markert, C. D., Bechke, E., Williamson, C., Clemons, K. N., Snarr, R. L., & McKenzie, M. J. (2019). Acute inflammatory responses to high-intensity functional training programming: An observational study. Journal of Human Sport and Exercise, 14(4), 906–917.



Sport Medicine, Nutrition & Health