Acute inflammatory responses to high-intensity functional training programming: An observational study

Brian Kliszczewicz, Chad D. Markert, Emily Bechke, Cassie Williamson, Khala N. Clemons, Ronald L. Snarr, Michael J. McKenzie

Abstract

Effects of varying types of short duration workouts in high-intensity functional training (HIFT) on inflammatory biomarkers have not been adequately characterized. Objectives: The purpose of this descriptive study was to examine the acute effects of HIFT workouts on biomarkers of inflammation, over time, in two HIFT bouts. Materials and Methods: Ten apparently healthy males (28.1 ± 5 yrs) completed two HIFT sessions (“short bout:” sub-5-minute vs. “long bout:” 15-minute) in a randomized crossover design. Blood was drawn pre and post-exercise, and 1 hour, 3 hours, and 6 hours post-exercise, centrifuged, and plasma frozen for analysis. Inflammation was assessed through plasma interleukin-6 (IL-6), interleukin-10 (IL-10), and tumour necrosis factor alpha (TNF-α). Results: Repeated measures ANOVA revealed a single trial-dependent difference (IL-6, p≤ 0.05), and while statistically significant, this difference may not be biologically significant. The biomarkers IL-6, IL-10, and TNF-α all follow a similar pattern of peaking post-exercise and returning to baseline within 6 hours in both trials. Conclusions: Both temporal responses and concentrations were similar in the short and long bout. A practical implication is that both bouts of a HIFT elicit certain specific physiologic inflammatory responses.


Keywords

Interleukin 6; Interleukin 10; TNF- α; Acute exercise; Acute resistance exercise

References

Benatti, F. B., & Pedersen, B. K. (2015). Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol, 11(2), 86-97. https://doi.org/10.1038/nrrheum.2014.193

Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol (1985), 98(6), 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004

Carlson, B. M., & Faulkner, J. A. (1983). The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc, 15(3), 187-198. https://doi.org/10.1249/00005768-198315030-00003

Charles, P., Elliott, M. J., Davis, D., Potter, A., Kalden, J. R., Antoni, C., . . . Maini, R. N. (1999). Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol, 163(3), 1521-1528.

Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., . . . Gherardi, R. K. (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell, 18(4), 1397-1409. https://doi.org/10.1091/mbc.e06-08-0693

Cullen, T., Thomas, A. W., Webb, R., & Hughes, M. G. (2016). Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl Physiol Nutr Metab, 41(8), 803-808. https://doi.org/10.1139/apnm-2015-0640

Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol, 37(2), 247-248. https://doi.org/10.1152/jappl.1974.37.2.247

Duchesne, E., Dufresne, S. S., & Dumont, N. A. (2017). Impact of Inflammation and Anti-inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Phys Ther, 97(8), 807-817. https://doi.org/10.1093/ptj/pzx056

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149

Faulkner, J. A., Brooks, S. V., & Opiteck, J. A. (1993). Injury to Skeletal-Muscle Fibers during Contractions - Conditions of Occurrence and Prevention. Phys Ther, 73(12), 911-921. https://doi.org/10.1093/ptj/73.12.911

Feito, Y., Heinrich, K. M., Butcher, S. J., & Poston, W. S. C. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports (Basel), 6(3). https://doi.org/10.3390/sports6030076

Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., . . . Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol (Lond), 575(3), 901-911. https://doi.org/10.1113/jphysiol.2006.112094

Hartman, J., & Frishman, W. H. (2014). Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiol Rev, 22(3), 147-151. https://doi.org/10.1097/CRD.0000000000000021

Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. J appl physiol, 91(2), 534-551. https://doi.org/10.1152/jappl.2001.91.2.534

Heinrich, K. M., Becker, C., Carlisle, T., Gilmore, K., Hauser, J., Frye, J., & Harms, C. A. (2015). High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study. Eur J Cancer Care (Engl), 24(6), 812-817. https://doi.org/10.1111/ecc.12338

Heinrich, K. M., Patel, P. M., O'Neal, J. L., & Heinrich, B. S. (2014). High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health, 14, 789. https://doi.org/10.1186/1471-2458-14-789

Huynh, A., Leong, K., Jones, N., Crump, N., Russell, D., Anderson, M., . . . Johnson, D. F. (2016). Outcomes of exertional rhabdomyolysis following high-intensity resistance training. Intern Med J, 46(5), 602-608. https://doi.org/10.1111/imj.13055

Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol, 557(Pt 2), 571-582. https://doi.org/10.1113/jphysiol.2003.057711

Keltz, E., Khan, F. Y., & Mann, G. (2013). Rhabdomyolysis. The role of diagnostic and prognostic factors. Muscles Ligaments Tendons J, 3(4), 303-312.

Kliszczewicz, B., Buresh, R., Bechke, E., & Williamson, C. (2017). Metabolic biomarkers following a short and long bout of high-intensity functional training in recreationally trained men. Journal of Human Sport and Exercise, 12(3), 710-718. https://doi.org/10.14198/jhse.2017.123.15

Kliszczewicz, B., Snarr, R., & Esco, M. (2014). Metabolic And Cardiovascular Response to the Crossfit Workout "Cindy": A Pilot Study. J Sport Human Perf, 2(2), 1-9.

Kliszczewicz, B., Williamson, C., Bechke, E., McKenzie, M., & Hoffstetter, W. (2018). Autonomic response to a short and long bout of high-intensity functional training. J Sports Sci, 36(16), 1872-1879. https://doi.org/10.1080/02640414.2018.1423857

Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J. (2017). Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J Strength Cond Res, 31(10), 2920-2937. https://doi.org/10.1519/JSC.0000000000002122

Leggate, M., Carter, W. G., Evans, M. J., Vennard, R. A., Sribala-Sundaram, S., & Nimmo, M. A. (2012). Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol (1985), 112(8), 1353-1360. https://doi.org/10.1152/japplphysiol.01080.2011

Monchanin, G., Serpero, L. D., Connes, P., Tripette, J., Wouassi, D., Bezin, L., . . . Martin, C. (2007). Effects of progressive and maximal exercise on plasma levels of adhesion molecules in athletes with sickle cell trait with or without alpha-thalassemia. J Appl Physiol (1985), 102(1), 169-173. https://doi.org/10.1152/japplphysiol.00272.2006

Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. J Physiol, 536(Pt 2), 329-337. https://doi.org/10.1111/j.1469-7793.2001.0329c.xd

Perandini, L. A., Chimin, P., Lutkemeyer, D. D. S., & Camara, N. O. S. (2018). Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J. https://doi.org/10.1111/febs.14417

Petersen, A. M. W., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. J appl physiol, 98(4), 1154-1162. https://doi.org/10.1152/japplphysiol.00164.2004

Reihmane, D., Jurka, A., Tretjakovs, P., & Dela, F. (2013). Increase in IL-6, TNF-alpha, and MMP-9, but not sICAM-1, concentrations depends on exercise duration. European J Appl Physiol, 113(4), 851-858. https://doi.org/10.1007/s00421-012-2491-9

Shephard, R. J. (2002). Cytokine responses to physical activity, with particular reference to IL-6: Sources, actions, and clinical implications. Crit Rev Immunol, 22(3), 165-182.

Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., & Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev, 8, 6-48.

Taniguchi, T., Koido, Y., Aiboshi, J., Yamashita, T., Suzaki, S., & Kurokawa, A. (1999). The ratio of interleukin-6 to interleukin-10 correlates with severity in patients with chest and abdominal trauma. Am J Emerg Med, 17(6), 548-551. https://doi.org/10.1016/S0735-6757(99)90194-8

Thompson, W. R. (2017). Worldwide survey of fitness trends for 2018 The CREP Edition. Acsms Health & Fitness Journal, 21(6), 10-19. https://doi.org/10.1249/FIT.0000000000000341

Tidball, J. G. (1995). Inflammatory Cell Response to Acute Muscle Injury. Med Sci Sports Exerc, 27(7), 1022-1032. https://doi.org/10.1249/00005768-199507000-00011

Wadley, A. J., Chen, Y. W., Lip, G. Y., Fisher, J. P., & Aldred, S. (2016). Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. J Sports Sci, 34(1), 1-9. https://doi.org/10.1080/02640414.2015.1035666

Yamada, M., Suzuki, K., Kudo, S., Totsuka, M., Nakaji, S., & Sugawara, K. (2002). Raised plasma G-CSF and IL-6 after exercise may play a role in neutrophil mobilization into the circulation. J Appl Physiol (1985), 92(5), 1789-1794. https://doi.org/10.1152/japplphysiol.00629.2001

Yang, W. J., & Hu, P. (2018). Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl, 13, 25-32. https://doi.org/10.1016/j.jot.2018.01.002




DOI: https://doi.org/10.14198/jhse.2019.144.18





License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/