Age-related trends in anthropometry and jump and sprint performances in elite soccer players from 13 to 20 years of age: A cross-sectional study

Authors

DOI:

https://doi.org/10.14198/jhse.2019.144.06

Keywords:

Growth, Team sports performance, Repeated sprint ability, Athlete

Abstract

The aim of this investigation was to determine age-related trends for anthropometric and physical variables in elite young soccer players. For this purpose, a total of 114 young male soccer players from a high-performance soccer academy participated in this investigation. Anthropometric and physical variables (countermovement jump, 6×40 m shuttle run test, 2×11 m slalom test with the ball) were determined. Results. Body height (U15<U17~U20; p<0.01) and body mass significantly increased (U15<U17<U20; p<0.01) while body fat decreased with age (U15~U17>U20; p<0.01). However, the relationships of these variables with age were explained by curvilinear polynomial equations with a tendency for plateauing at ~17 years of age. There were also age-based differences in maximal running velocity (U15<U17<U20; p<0.01), running velocity with ball (U15<U17~U20; p<0.01) and jump height (U15<U17<U20; p<0.01). The relationships of the physical variables with age were explained by curvilinear polynomial equations with plateaus starting at~17 years of age. In young soccer players, the evolution of individual anthropometric and physical condition is strongly related to player’s age as part of the qualitative adaptations that accompany growth. However, the growth process cannot be explained by linear models because most of the variables reached a plateau when players were 17 years of age.

Downloads

Download data is not yet available.

References

Baldi, M., Silva, J.F., Buzachera, C.F., Castagna, C., & Guglielmo, L.G. (2017). Repeated sprint ability in soccer players: associations with physiological and neuromuscular factors. The Journal of sports medicine and physical fitness, 57(1-2), 26-32.

Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. International journal of sports physiology and performance, 1(1), 50-57. https://doi.org/10.1123/ijspp.1.1.50

Carling, C., le Gall, F., Reilly, T., & Williams, A. M. (2009). Do anthropometric and fitness characteristics vary according to birth date distribution in elite youth academy soccer players? Scandinavian journal of medicine & science in sports, 19(1), 3-9. https://doi.org/10.1111/j.1600-0838.2008.00867.x

Cobley, S., Baker, J., Wattie, N., & McKenna, J. (2009). Annual age-grouping and athlete development: a meta-analytical review of relative age effects in sport. Sports medicine, 39(3), 235-256. https://doi.org/10.2165/00007256-200939030-00005

Del Coso, J., Perez-Lopez, A., Abian-Vicen, J., Salinero, J. J., Lara, B., & Valades, D. (2014). Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. International journal of sports physiology and performance, 9(6), 1013-1018. https://doi.org/10.1123/ijspp.2013-0448

Delorme, N., & Raspaud, M. (2009). The relative age effect in young French basketball players: a study on the whole population. Scandinavian journal of medicine & science in sports, 19(2), 235-242. https://doi.org/10.1111/j.1600-0838.2008.00781.x

Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability - part I: factors contributing to fatigue. Sports medicine (Auckland, N.Z.), 41(8), 673-694. https://doi.org/10.2165/11590550-000000000-00000

Gutierrez Diaz Del Campo, D., Pastor Vicedo, J. C., Gonzalez Villora, S., & Contreras Jordan, O. R. (2010). The relative age effect in youth soccer players from Spain. Journal of sports science & medicine, 9(2), 190-198.

Hebestreit, H., Mimura, K., & Bar-Or, O. (1993). Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. Journal of applied physiology (Bethesda, Md. : 1985), 74(6), 2875-2880.

Hirose, N. (2009). Relationships among birth-month distribution, skeletal age and anthropometric characteristics in adolescent elite soccer players. Journal of sports sciences, 27(11), 1159-1166. https://doi.org/10.1080/02640410903225145

le Gall, F., Carling, C., Williams, M., & Reilly, T. (2010). Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. Journal of science and medicine in sport, 13(1), 90-95. https://doi.org/10.1016/j.jsams.2008.07.004

Malina, Robert M, Bouchard, Claude, & Bar-Or, Oded. (2004). Growth, maturation, and physical activity. Champaign: Human Kinetics.

Mendez-Villanueva, A., Buchheit, M., Kuitunen, S., Douglas, A., Peltola, E., & Bourdon, P. (2011). Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players. Journal of sports sciences, 29(5), 477-484. https://doi.org/10.1080/02640414.2010.536248

Milanovic, Z., Sporis, G., Trajkovic, N., James, N., & Samija, K. (2013). Effects of a 12 Week SAQ Training Programme on Agility with and without the Ball among Young Soccer Players. Journal of sports science & medicine, 12(1), 97-103.

Mujika, I., Spencer, M., Santisteban, J., Goiriena, J. J., & Bishop, D. (2009). Age-related differences in repeated-sprint ability in highly trained youth football players. Journal of sports sciences, 27(14), 1581-1590. https://doi.org/10.1080/02640410903350281

Ostapczuk, M., & Musch, J. (2013). The influence of relative age on the composition of professional soccer squads. European journal of sport science, 13(3), 249-255. https://doi.org/10.1080/17461391.2011.606841

Papaiakovou, G., Giannakos, A., Michailidis, C., Patikas, D., Bassa, E., Kalopisis, V., . . . Kotzamanidis, C. (2009). The effect of chronological age and gender on the development of sprint performance during childhood and puberty. Journal of strength and conditioning research / National Strength & Conditioning Association, 23(9), 2568-2573. https://doi.org/10.1519/JSC.0b013e3181c0d8ec

Paterson, D. H., Cunningham, D. A., & Bumstead, L. A. (1986). Recovery O2 and blood lactic acid: longitudinal analysis in boys aged 11 to 15 years. European journal of applied physiology and occupational physiology, 55(1), 93-99. https://doi.org/10.1007/BF00422901

Philippaerts, R. M., Vaeyens, R., Janssens, M., Van Renterghem, B., Matthys, D., Craen, R., . . . Malina, R. M. (2006). The relationship between peak height velocity and physical performance in youth soccer players. Journal of sports sciences, 24(3), 221-230. https://doi.org/10.1080/02640410500189371

Salinero, J. J., Pérez, B., Burillo, P., & Lesma, M. L. (2013). Relative age effect in European professional football. Analysis by position. Journal of Human Sport and Exercise, 8(4), 966-973. https://doi.org/10.4100/jhse.2013.84.07

Sherar, L. B., Baxter-Jones, A. D., Faulkner, R. A., & Russell, K. W. (2007). Do physical maturity and birth date predict talent in male youth ice hockey players? Journal of sports sciences, 25(8), 879-886. https://doi.org/10.1080/02640410600908001

Sung, R. Y., Lau, P., Yu, C. W., Lam, P. K., & Nelson, E. A. (2001). Measurement of body fat using leg to leg bioimpedance. Archives of disease in childhood, 85(3), 263-267. https://doi.org/10.1136/adc.85.3.263

Till, K., Cobley, S., Wattie, N., O'Hara, J., Cooke, C., & Chapman, C. (2010). The prevalence, influential factors and mechanisms of relative age effects in UK Rugby League. Scandinavian journal of medicine & science in sports, 20(2), 320-329. https://doi.org/10.1111/j.1600-0838.2009.00884.x

Unnithan, V., White, J., Georgiou, A., Iga, J., & Drust, B. (2012). Talent identification in youth soccer. Journal of sports sciences, 30(15), 1719-1726. https://doi.org/10.1080/02640414.2012.731515

Valente-Dos-Santos, J., Coelho, E. Silva M. J., Severino, V., Duarte, J., Martins, R. S., Figueiredo, A. J., . . . Malina, R. M. (2012). Longitudinal study of repeated sprint performance in youth soccer players of contrasting skeletal maturity status. Journal of sports science & medicine, 11(3), 371-379.

Wattie, N., Schorer, J., & Baker, J. (2015). The relative age effect in sport: a developmental systems model. Sports medicine (Auckland, N.Z.), 45(1), 83-94. https://doi.org/10.1007/s40279-014-0248-9

Wong, P. L., Chamari, K., Dellal, A., & Wisloff, U. (2009). Relationship between anthropometric and physiological characteristics in youth soccer players. Journal of strength and conditioning research / National Strength & Conditioning Association, 23(4), 1204-1210. https://doi.org/10.1519/JSC.0b013e31819f1e52

Zafeiridis, A., Dalamitros, A., Dipla, K., Manou, V., Galanis, N., & Kellis, S. (2005). Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Medicine and science in sports and exercise, 37(3), 505-512. https://doi.org/10.1249/01.MSS.0000155394.76722.01

Zanconato, S., Buchthal, S., Barstow, T. J., & Cooper, D. M. (1993). 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. Journal of applied physiology (Bethesda, Md. : 1985), 74(5), 2214-2218. https://doi.org/10.1152/jappl.1993.74.5.2214

Statistics

Statistics RUA

Published

2019-12-02

How to Cite

Salinero, J. J., Gonzalez-Millan, C., Gutierrez, D., Abian-Vicen, J., Burillo, P., & Del Coso, J. (2019). Age-related trends in anthropometry and jump and sprint performances in elite soccer players from 13 to 20 years of age: A cross-sectional study. Journal of Human Sport and Exercise, 14(4), 772–783. https://doi.org/10.14198/jhse.2019.144.06

Issue

Section

Physical Education / Children & Exercise