Health and fitness benefits using a heart rate intensity-based group fitness exercise regimen
DOI:
https://doi.org/10.14198/jhse.2020.153.18Keywords:
Aerobic fitness, Cardiovascular health, HIIT, VO2max, Interval training, Group exerciseAbstract
Inactivity leads to morbidity and mortality, while novel and engaging approaches to fitness improve health outcomes. The current study examined an 8-week commercial group exercise regimen for high intensity interval training (HIIT) in order to examine comprehensive metrics of health and fitness. Aerobic fitness, body composition, resting metabolic rate, blood cholesterol and glucose, in addition to resting blood pressure were quantified in a laboratory setting independent of the training facilities. Exercise training utilized multimodal HIIT-based exercises and work intensity was gauged by real-time heart rate feedback. All participants completed the required two sessions per week. Pre-Post analyses indicate aerobic fitness (Pre O2max = 36.8 ml•kg-1•min-1; Post O2max = 40.8 ml•kg-1•min-1), % fat (Pre = 28.1%; Post = 27.0%), resting metabolic rate (Pre = 1557 kcals; Post = 1664 kcals), resting blood pressure (Pre = 128.8/78.1 mmHg; Post = 116.7/75.4 mmHg), and circulating triacylglycerol (Pre = 100.0 mg/dl; Post = 78.7 mg/dl) were significantly altered. This study quantified improvements in aerobic fitness, body composition, resting metabolic rate, resting blood pressure, and triacylglycerol after an 8-week HIIT regimen. The implications of heart rate (HR) monitoring within franchised group exercise with wearable technology serves as an unexplored scientific approach to understand novel exercise prescriptions on health-fitness outcomes. Future research should investigate sociological aspects of program adherence, while biological applications should examine the adaptive stimuli of HIIT training on health and fitness improvements.
Funding
Orange Theory FitnessDownloads
References
ACSM’s guidelines for exercise testing and prescription. (2016). (D. Reibe Ed. 10th ed.). Philadelphia: Wolters Kluwer.
Bellafante, G. (2016). At the gym, abs and stats. New York Times.
Cabral-Santos, C., Castrillon, C. I., Miranda, R. A., Monteiro, P. A., Inoue, D. S., Campos, E. Z., . . . Lira, F. S. (2016). Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front Physiol, 7, 509. https://doi.org/10.3389/fphys.2016.00509
Claudino, J. G., Gabbett, T. J., Bourgeois, F., Souza, H. S., Miranda, R. C., Mezencio, B., . . . Serrao, J. C. (2018). CrossFit Overview: Systematic Review and Meta-analysis. Sports Med Open, 4(1), 11. https://doi.org/10.1186/s40798-018-0124-5
Compher, C., Frankenfield, D., Keim, N., Roth-Yousey, L., & Evidence Analysis Working, G. (2006). Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc, 106(6), 881-903. https://doi.org/10.1016/j.jada.2006.02.009
Eskelinen, J. J., Heinonen, I., Loyttyniemi, E., Hakala, J., Heiskanen, M. A., Motiani, K. K., . . . Kalliokoski, K. K. (2016). Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men. J Physiol, 594(23), 7127-7140. https://doi.org/10.1113/jp273089
Fisher, G., Schwartz, D. D., Quindry, J., Barberio, M. D., Foster, E. B., Jones, K. W., & Pascoe, D. D. (2011). Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. J Appl Physiol (1985), 110(3), 730-737. https://doi.org/10.1152/japplphysiol.00575.2010
Gaesser, G. A., & Brooks, G. A. (1984). Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc, 16(1), 29-43. https://doi.org/10.1249/00005768-198401000-00008
Gaskill, S. E., Ruby, B. C., Walker, A. J., Sanchez, O. A., Serfass, R. C., & Leon, A. S. (2001). Validity and reliability of combining three methods to determine ventilatory threshold. Med Sci Sports Exerc, 33(11), 1841-1848. https://doi.org/10.1097/00005768-200111000-00007
Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., . . . Bauman, A. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081-1093. https://doi.org/10.1161/circulationaha.107.185649
Izadi, M. R., Ghardashi Afousi, A., Asvadi Fard, M., & Babaee Bigi, M. A. (2018). High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. Journal of physiology and biochemistry, 74(1), 47-55. https://doi.org/10.1007/s13105-017-0602-0
Kerksick, C., Thomas, A., Campbell, B., Taylor, L., Wilborn, C., Marcello, B., . . . Kreider, R. B. (2009). Effects of a popular exercise and weight loss program on weight loss, body composition, energy expenditure and health in obese women. Nutr Metab (Lond), 6, 23. https://doi.org/10.1186/1743-7075-6-23
Khammassi, M., Ouerghi, N., Hadj-Taieb, S., Feki, M., Thivel, D., & Bouassida, A. (2018). Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J Exerc Rehabil, 14(1), 118-125. https://doi.org/10.12965/jer.1835124.562
Kliszczewicz, B., Quindry, C. J., Blessing, L. D., Oliver, D. G., Esco, R. M., & Taylor, J. K. (2015). Acute Exercise and Oxidative Stress: CrossFit() vs. Treadmill Bout. J Hum Kinet, 47, 81-90. https://doi.org/10.1249/01.mss.0000477551.59294.56
Laurent, C. M., Vervaecke, L. S., Kutz, M. R., & Green, J. M. (2014). Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. J Strength Cond Res, 28(4), 920-927. https://doi.org/10.1519/jsc.0b013e3182a1f574
Lee, D. C., Artero, E. G., Sui, X., & Blair, S. N. (2010). Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol, 24(4 Suppl), 27-35. https://doi.org/10.1177/1359786810382057
Lithgow, H. M., & Leggate, M. (2018). The Effect of a Single Bout of High Intensity Intermittent Exercise on Glucose Tolerance in Non-diabetic Older Adults. Int J Exerc Sci, 11(3), 95-105.
Locke, S. R., Bourne, J. E., Beauchamp, M. R., Little, J. P., Barry, J., Singer, J., & Jung, M. E. (2018). High-Intensity Interval or Continuous-Moderate Exercise: A 24-Week Pilot Trial. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000001668
Oliveira, B. R. R., Santos, T. M., Kilpatrick, M., Pires, F. O., & Deslandes, A. C. (2018). Affective and enjoyment responses in high intensity interval training and continuous training: A systematic review and meta-analysis. PLoS One, 13(6), e0197124. https://doi.org/10.1371/journal.pone.0197124
Quindry, J. C., Yount, D., O'Bryant, H., & Rudisill, M. E. (2011). Exercise engagement is differentially motivated by age-dependent factors. Am J Health Behav, 35(3), 334-345. https://doi.org/10.5993/ajhb.35.3.7
Racil, G., Ben Ounis, O., Hammouda, O., Kallel, A., Zouhal, H., Chamari, K., & Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol, 113(10), 2531-2540. https://doi.org/10.1007/s00421-013-2689-5
Racil, G., Coquart, J. B., Elmontassar, W., Haddad, M., Goebel, R., Chaouachi, A., . . . Chamari, K. (2016). Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport, 33(2), 145-152. https://doi.org/10.5604/20831862.1198633
Roy, M., Williams, S. M., Brown, R. C., Meredith-Jones, K. A., Osborne, H., Jospe, M., & Taylor, R. W. (2018). HIIT in the Real World: Outcomes from a 12-Month Intervention in Overweight Adults. Med Sci Sports Exerc. https://doi.org/10.1249/mss.0000000000001642
Sawyer, B. J., Tucker, W. J., Bhammar, D. M., Ryder, J. R., Sweazea, K. L., & Gaesser, G. A. (2016). Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol (1985), 121(1), 279-288. https://doi.org/10.1152/japplphysiol.00024.2016
Schmitz, B., Rolfes, F., Schelleckes, K., Mewes, M., Thorwesten, L., Kruger, M., . . . Brand, S. M. (2018). Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c. Front Physiol, 9, 395. https://doi.org/10.3389/fphys.2018.00395
Schneider, D. A., Phillips, S. E., & Stoffolano, S. (1993). The simplified V-slope method of detecting the gas exchange threshold. Med Sci Sports Exerc, 25(10), 1180-1184. https://doi.org/10.1249/00005768-199310000-00015
Sijie, T., Hainai, Y., Fengying, Y., & Jianxiong, W. (2012). High intensity interval exercise training in overweight young women. J Sports Med Phys Fitness, 52(3), 255-262.
Sperlich, B., Hahn, L. S., Edel, A., Behr, T., Helmprobst, J., Leppich, R., . . . Holmberg, H. C. (2018). A 4-Week Intervention Involving Mobile-Based Daily 6-Minute Micro-Sessions of Functional High-Intensity Circuit Training Improves Strength and Quality of Life, but Not Cardio-Respiratory Fitness of Young Untrained Adults. Front Physiol, 9, 423. https://doi.org/10.3389/fphys.2018.00423
Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol (1985), 102(4), 1439-1447. https://doi.org/10.1152/japplphysiol.01098.2006
Torchyan, A. A., BinSaeed, A. A., Aleid, Y. S., Nagshbandi, A. A., Almousa, F., Papikyan, S. L., & Gosadi, I. M. (2016). Interaction Effects of Happiness and Physical Activity on Smoking Initiation. Am J Health Behav, 40(6), 729-737. https://doi.org/10.5993/ajhb.40.6.5
Volgyi, E., Tylavsky, F. A., Lyytikainen, A., Suominen, H., Alen, M., & Cheng, S. (2008). Assessing body composition with DXA and bioimpedance: effects of obesity, physical activity, and age. Obesity (Silver Spring, Md, 16(3), 700-705. https://doi.org/10.1038/oby.2007.94
Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). Health benefits of physical activity: the evidence. CMAJ, 174(6), 801-809. https://doi.org/10.1503/cmaj.051351
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.