Effect of home-based oculomotor exercises on postural stability in healthy female adults





Postural control, Proprioceptive, Visual, Saccadic eye movement, Smooth pursuit


Visual information improves postural stability and facilitates stabilization of upright posture. To date, how saccades and smooth pursuit eye movements affect postural control is still a matter of debate. Therefore, the purpose of this study was to investigate the effects of oculo-motor exercises on static postural stability in healthy female adults. Participants (51.6 ± 4.9 years) were randomly allocated to an experimental group (n = 9) that performed 4-week home-based oculomotor exercises (i.e., saccadic eye movement and smooth pursuit) or a control group (n = 9). Pre and post postural stability during quiet standing with eyes open were measured on both groups. Significant ‘Time x Group’ interaction (p < .05) was found for Length Function of Surface, anterior-posterior acceleration, length of the oscillations, rearfoot load and body sway surface. By post hoc analyses, significant differences were found in all stabilometric parameters during quiet standing in the experimental group (p < .05). No significant differences were found in postural stability in the control group. Improvements in postural stability after four weeks of two combined oculomotor exercises suggest that this specific type of ocular system exercises may be beneficial for healthy female adults. In addition, the present investigation supports evidence that eye movements interact with the postural control system.


Download data is not yet available.


Carpenter, M. G., Frank, J. S., Winter, D. A., & Peysar, G. W. (2001). Sampling duration effects on centre of pressure summary measures. Gait & posture, 13(1), 35-40. https://doi.org/10.1016/s0966-6362(00)00093-x

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd edition. Hillsdale, NJ: L. Lawrence Earlbaum Associates.

Collewijn, H., Martins, A. J., & Steinman, R. M. (1983). Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. The Journal of physiology, 340(1), 259-286. https://doi.org/10.1113/jphysiol.1983.sp014762

DeAngelis, G. C., & Angelaki, D. E. (2012). Visual–vestibular integration for self-motion perception. In The neural bases of multisensory processes. Boca Raton, FL: CRC Press/Taylor & Francis.

Donaldson, I. M. L. (2000). The functions of the proprioceptors of the eye muscles. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355(1404), 1685-1754. https://doi.org/10.1098/rstb.2000.0732

Glasauer, S., Schneider, E., Jahn, K., Strupp, M., & Brandt, T. (2005). How the eyes move the body. Neurology, 65(8), 1291-1293. https://doi.org/10.1212/01.wnl.0000175132.01370.fc

Guerraz, M., & Bronstein, A. M. (2008). Ocular versus extraocular control of posture and equilibrium. Neurophysiologie Clinique/Clinical Neurophysiology, 38(6), 391-398. https://doi.org/10.1016/j.neucli.2008.09.007

Guerraz, M., Sakellari, V., Burchill, P., & Bronstein, A. M. (2000). Influence of motion parallax in the control of spontaneous body sway. Experimental brain research, 131(2), 244-252. https://doi.org/10.1007/s002219900307

Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive psychology, 23(3), 420-456. https://doi.org/10.1016/0010-0285(91)90015-g

Ito, M. (1972). Neural design of the cerebellar motor control system. Brain research, 40(1), 81-84. https://doi.org/10.1016/0006-8993(72)90110-2

Jahn, K., Strupp, M., Krafczyk, S., SchuÈler, O., Glasauer, S., & Brandt, T. (2002). Suppression of eye movements improves balance. Brain, 125(9), 2005-2011. https://doi.org/10.1093/brain/awf204

Kowler, E. (2011). Eye movements: the past 25 years. Vision research, 51(13), 1457-1483. https://doi.org/10.1016/j.visres.2010.12.014

Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision research, 41(25-26), 3559-3565. https://doi.org/10.1016/s0042-6989(01)00102-x

Laurens, J., Awai, L., Bockisch, C. J., Hegemann, S., Van Hedel, H. J. A., Dietz, V., & Straumann, D. (2010). Visual contribution to postural stability: interaction between target fixation or tracking and static or dynamic large-field stimulus. Gait & posture, 31(1), 37-41. https://doi.org/10.1016/j.gaitpost.2009.08.241

Lewis, R. F., Zee, D. S., Gaymard, B. M., & Guthrie, B. L. (1994). Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. Journal of Neurophysiology, 72(2), 1028-1031. https://doi.org/10.1152/jn.1994.72.2.1028

Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annual review of neuroscience, 4(1), 273-299. https://doi.org/10.1146/annurev.ne.04.030181.001421

Paulus, W. M., Straube, A., & Brandt, T. H. (1984). Visual stabilization of posture: physiological stimulus characteristics and clinical aspects. Brain, 107(4), 1143-1163. https://doi.org/10.1093/brain/107.4.1143

Paulus, W., Straube, A., Krafczyk, S., & Brandt, T. (1989). Differential effects of retinal target displacement, changing size and changing disparity in the control of anterior/posterior and lateral body sway. Experimental Brain Research, 78(2), 243-252. https://doi.org/10.1007/bf00228896

Raphan, T., Imai, T., Moore, S. T., & Cohen, B. (2001). Vestibular compensation and orientation during locomotion. Annals of the New York Academy of Sciences, 942(1), 128-138. https://doi.org/10.1111/j.1749-6632.2001.tb03740.x

Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. The Journal of Physiology, 159(2), 326-338. https://doi.org/10.1113/jphysiol.1961.sp006811

Rey, F., Lê, T. T., Bertin, R., & Kapoula, Z. (2008). Saccades horizontal or vertical at near or at far do not deteriorate postural control. Auris Nasus Larynx, 35(2), 185-191. https://doi.org/10.1016/j.anl.2007.07.001

Rodrigues, S. T., Polastri, P. F., Carvalho, J. C., Barela, J. A., Moraes, R., & Barbieri, F. A. (2015). Saccadic and smooth pursuit eye movements attenuate postural sway similarly. Neuroscience letters, 584, 292-295. https://doi.org/10.1016/j.neulet.2014.10.045

Rougier, P., & Garin, M. (2007). Performing saccadic eye movements or blinking improves postural control. Motor control, 11(3), 213-223. https://doi.org/10.1123/mcj.11.3.213

Roy, J. E., & Cullen, K. E. (2002). Vestibuloocular reflex signal modulation during voluntary and passive head movements. Journal of neurophysiology, 87(5), 2337-2357. https://doi.org/10.1152/jn.2002.87.5.2337

Rushton, D. N., Brandt, T., Paulus, W., & Krafczyk, S. (1989). Postural sway during retinal image stabilisation. Journal of Neurology, Neurosurgery & Psychiatry, 52(3), 376-381. https://doi.org/10.1136/jnnp.52.3.376

Schulmann, D. L., Godfrey, B., & Fisher, A. G. (1987). Effect of eye movements on dynamic equilibrium. Physical therapy, 67(7), 1054-1057. https://doi.org/10.1093/ptj/67.7.1054

Stoffregen, T. A., Bardy, B. G., Bonnet, C. T., & Pagulayan, R. J. (2006). Postural stabilization of visually guided eye movements. Ecological Psychology, 18(3), 191-222. https://doi.org/10.1207/s15326969eco1803_3

Strupp, M., Glasauer, S., Jahn, K., Schneider, E., Krafczyk, S., & Brandt, T. (2003). Eye movements and balance. Annals of the New York Academy of Sciences, 1004(1), 352-358. https://doi.org/10.1196/annals.1303.033

White, K. D., Post, R. B., & Leibowitz, H. W. (1980). Saccadic eye movements and body sway. Science, 208(4444), 621-623. https://doi.org/10.1126/science.7367888

Winter, D. A., Prince, F., Frank, J. S., Powell, C., & Zabjek, K. F. (1996). Unified theory regarding A/P and M/L balance in quiet stance. Journal of neurophysiology, 75(6), 2334-2343. https://doi.org/10.1152/jn.1996.75.6.2334


Statistics RUA



How to Cite

Fischetti, F., Cataldi, S., Giunto, A., & Greco, G. (2020). Effect of home-based oculomotor exercises on postural stability in healthy female adults. Journal of Human Sport and Exercise, 15(3), 653–660. https://doi.org/10.14198/jhse.2020.153.15