Morphology, body composition and maturity status of young Colombian athletes from the Urabá subregion: A k-Medoids and hierarchical clustering analysis


  • Diego A. Bonilla DBSS International SAS, Colombia
  • Javier O. Peralta National Training Service SENA, Colombia
  • Jhonny A. Bonilla National Training Service SENA, Colombia
  • Wilson Urrutia-Mosquera National Training Service SENA, Colombia
  • Salvador Vargas-Molina University of Wales Trinity Saint David, Spain
  • Roberto Cannataro University of Calabria, Italy
  • Jorge L. Petro University of Córdoba, Colombia


Anthropometry, Somatotype, Biological maturation, Early sport specialization, Youth sports, Sports medicine


The Urabá subregion is one of the most prominent cradles of Colombian elite athletes and, therefore, highly recognized within the “Land of Athletes” framework of the Colombian Ministry of Sports. In order to contribute to the young talent identification and selection of sports specialization, the aim of this STROBE-based cross-sectional study was to determine the morphological characteristics (MC), body composition (BC) and maturity status (MS) of U16 athletes from this subregion (7 municipalities). Eighty-one young athletes (66 weightlifters, 15 boxers) with at least one regional-competition of experience participated (33F; 48M; 14.9 ± 1.4 years; 62.28 ± 16.6 kg; 162.8 ± 9.9 cm). After parental informed consent, ISAK-standardized anthropometric data were collected during a youth sports championship. Athletes were subdivided in clusters using the PAM (k-Medoids clustering) and the bottom-up agglomerative (hierarchical clustering) algorithms. Both clustering methods were based on 55 variables that encompassed MC (raw variables, indices, somatotype), BC (five-compartment model, %BF-equations, ∑S) and MS (maturity offset, PHV, inter alia). The number of clusters was predefined as k = 2 since was the best solution according to 18 criterion-algorithms (100 bootstrap simulations). Non-parametric tests showed significant differences between sex, sports, municipalities and clusters for certain analysed variables. Internal validity of the clustering showed that sport type might explain the variation in the data; thus, it is noteworthy reasonable to recommend the implementation of unsupervised machine learning strategies along with other supervised methodologies in the identification and characterization of young talents and early sports specialization in Colombian athletes with Olympic projection but further research and support is needed.


Servicio Nacional de Aprendizaje – SENA, Urabá, DBSS International


Download data is not yet available.


Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current Status of Body Composition Assessment in Sport. Sports Medicine, 42(3), 227-249.

Alastrue Vidal, A., Rull Lluch, M., Camps Ausas, I., Ginesta Nus, C., Melus Moreno, M. R., & Salva Lacombe, J. A. (1988). [New norms and advices in the evaluation of anthropometric parameters in our population: adipose tissue-muscle index, weight indices and percentile tables of anthropometric data useful in nutritional assessment]. Medicina Clínica, 91(6), 223-236.

Alzate Salazar, D. A., Ramos Bermúdez, S., & Melo Betancourt, L. G. (2011). Tejido adiposo en escolares entre 7 y 18 anos de edad. Hacia la Promocion de la Salud, 16, 85+.

Ballard, R. J., Dewanti, R. A., Sayuti, S., & Umar, N. (2014). Correlation between Sum of 8 Skinfolds to Predicted % Body Fat Range as a Reliable Measure of Body Composition Assessment for Well-Trained Athletes. Asian Social Science, 10(5).

Bernal-Orozco, M. F., Posada-Falomir, M., Quiñónez-Gastélum, C. M., Plascencia-Aguilera, L. P., Arana-Nuño, J. R., Badillo-Camacho, N., . . . Vizmanos-Lamotte, B. (2020). Anthropometric and Body Composition Profile of Young Professional Soccer Players. Journal of Strength and Conditioning Research, 34(7), 1911-1923.

Berral de la Rosa, F. J., Rodríguez-Bies, E. C., Berral de la Rosa, C. J., Rojano Ortega, D., & Lara Padilla, E. (2010). Comparison of Anthropometric Equations for Estimation Muscle Mass in Badminton Player. International Journal of Morphology, 28(3).

Beunen, G., & Malina, R. M. (2007). Growth and Biologic Maturation: Relevance to Athletic Performance. In The Young Athlete (pp. 3-17).

Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: AnRPackage for Cluster Validation. Journal of Statistical Software, 25(4).

Cárdenas-Fernández, V., Chinchilla-Minguet, J. L., & Castillo-Rodríguez, A. (2019). Somatotype and Body Composition in Young Soccer Players According to the Playing Position and Sport Success. Journal of Strength and Conditioning Research, 33(7), 1904-1911.

Cardona, V. P. (2013). El deporte en el departamento de Antioquia y su materialización en política pública. Analecta Política, 4(5), 413-433.

Catikkas, F., Kurt, C., & Atalag, O. (2013). Kinanthropometric attributes of young male combat sports athletes. Coll Antropol, 37(4), 1365-1368.

Correa, B., & Enrique, J. (2008). Determinación del perfil antropométrico y cualidades físicas de niños futbolistas de Bogotá. Revista ciencias de la salud, 6(2).

Du Bois, D. (1916). Clinical Calorimetry. Archives of Internal Medicine, XVII(6_2).

Esparza-Ros, F., Vaquero-Cristóbal, R., & Marfell-Jones, M. (2019). International Standards for Anthropometric Assessment. In. Murcia, Spain: The International Society for the Advancement of Kinanthropometry.

Faigenbaum, A. D., Kraemer, W. J., Blimkie, C. J. R., Jeffreys, I., Micheli, L. J., Nitka, M., & Rowland, T. W. (2009). Youth Resistance Training: Updated Position Statement Paper From the National Strength and Conditioning Association. Journal of Strength and Conditioning Research, 23, S60-S79.

Fernández, P. C. G., Jara, M. d. C. B., & Zamudio, R. A. U. J. R. R. d. e. d. J. o. S. T. (2017). El índice locomotivo, una perspectiva antropométrica de la eficiencia biomecánica. 31(3), 3-11.

Fleisch, A. (1951). [Basal metabolism standard and its determination with the "metabocalculator"]. Helvetica Medica Acta, 18(1), 23-44.

Freedman, D. S., Horlick, M., & Berenson, G. S. (2013). A comparison of the Slaughter skinfold-thickness equations and BMI in predicting body fatness and cardiovascular disease risk factor levels in children. Am J Clin Nutr, 98(6), 1417-1424.

Fry, A. C., Ryan, A. J., Schwab, R. J., Powell, D. R., & Kraemer, W. J. (1991). Anthropometric characteristics as discriminators of body‐building success. Journal of Sports Sciences, 9(1), 23-32.

Garrido-Chamorro, R., Sirvent-Belando, J. E., González-Lorenzo, M., Blasco-Lafarga, C., & Roche, E. (2012). Skinfold Sum: Reference Values for Top Athletes. International Journal of Morphology, 30(3), 803-809.

Gryko, K., Kopiczko, A., Mikołajec, K., Stasny, P., & Musalek, M. (2018). Anthropometric Variables and Somatotype of Young and Professional Male Basketball Players. Sports (Basel), 6(1).

Heath, B. H., & Carter, J. E. L. (1967). A modified somatotype method. American Journal of Physical Anthropology, 27(1), 57-74.

Holway, F. E., & Garavaglia, R. (2009). Kinanthropometry of Group I rugby players in Buenos Aires, Argentina. Journal of Sports Sciences, 27(11), 1211-1220.

IOC. (2016). International Olympic Committee. Retrieved from

ISAK. (2020). The International Society for the Advancement of Kinanthropometry. Retrieved from

Kerr, D. (1988). An anthropometric method for fractionation of skin, adipose, bone, muscle and residual tissue masses in males and females age 6 to 77 years. (Doctoral), Simon Fraser University, Retrieved from

Kristiansen, E., & Stensrud, T. (2020). Talent development in a longitudinal perspective: Elite female handball players within a sport school system. Translational Sports Medicine, 3(4), 364-373.

Larson-Meyer, D. E., Woolf, K., & Burke, L. (2018). Assessment of Nutrient Status in Athletes and the Need for Supplementation. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 139-158.

Malina, R. M., Rogol, A. D., Cumming, S. P., Coelho e Silva, M. J., & Figueiredo, A. J. (2015). Biological maturation of youth athletes: assessment and implications. British Journal of Sports Medicine, 49(13), 852-859.

Mannor, S., Jin, X., Han, J., Jin, X., Han, J., Jin, X., . . . Zhang, X. (2011). K-Medoids Clustering. In Encyclopedia of Machine Learning (pp. 564-565).

Martin, A. D., Spenst, L. F., Drinkwater, D. T., & Clarys, J. P. (1990). Anthropometric estimation of muscle mass in men. Med Sci Sports Exerc, 22(5), 729-733.

MinDeporte. (2019). Colombia Tierra de Atletas: la estrategia para consolidar al país como un semillero de deportistas. Retrieved from

Mirwald, R. L., G. Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine and Science in Sports and Exercise, 34(4), 689-694.

Molina-Mora, J., Mata, F., & Bonilla, D. (2017). Improvement of K-Means Clustering Algorithm Performance in Gene Expression Data Analysis through Pre-Processing with Principal Component Analysis and Boosting. Research journal of life sciences bioinformatics pharmaceutical and chemical sciences, 3(2), 53-62.

Ms. Shiela David, C. N. S. K. W. A. (2020). Projecting Height and Weight with Machine Learning Using Anthropometric Measurements. International Journal of Advanced Science and Technology, 29(10s), 7091 - 7095.

Nguyen, T., Nguyen, T. H., & Zhukov, A. (2015). Studies of anthropometrical features using machine learning approach. Paper presented at the CEUR Workshop Proceedings.

Norton, K., & Eston, R. (2018). Kinanthropometry and exercise physiology: Routledge.

Palma, L. H., Méndez, C. H., Manrrique, A., Castro, J. A., Viveros, A., Garzón, K. A., . . . Restrepo, Á. J. (2021). Asociación entre la composición corporal y la condición física en estudiantes de grado sexto, pertenecientes a la institución educativa moderna de Tuluá, Colombia año 2019 (Association between body composition and the physical condition in sixth grade st. Retos(39), 539-546.

Panam Sports. (2019). Pan American Sports Organization. Retrieved from

Patel, R., Nevill, A., Cloak, R., Smith, T., & Wyon, M. (2019). Relative age, maturation, anthropometry and physical performance characteristics of players within an Elite Youth Football Academy. International Journal of Sports Science & Coaching, 14(6), 714-725.

Petro, J. L., Rodríguez Arrieta, A. N., & Montenegro Arjona, O. A. (2017). Perfil dermatoglífico y condición física de jugadores adolescentes de futbol. Educación Física y Ciencia, 19(2). ttps://

Piccirilli, M. (2018). Machine Learning Approaches to Human Body Shape Analysis. (Doctoral), West Virginia University, West Virginia University Libraries. Graduate Theses, Dissertations, and Problem Reports database. (6417).

Rativa, D., Fernandes, B. J. T., & Roque, A. (2018). Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-9.

Schofield, W. N. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition: Clinical Nutrition, 39 Suppl 1, 5-41.

Sherar, L. B., Mirwald, R. L., Baxter-Jones, A. D. G., & Thomis, M. (2005). Prediction of adult height using maturity-based cumulative height velocity curves. J Pediatr, 147(4), 508-514.

Slaughter, M. H., Lohman, T. G., Boileau, R. A., Horswill, C. A., Stillman, R. J., Van Loan, M. D., & Bemben, D. A. (1988). Skinfold equations for estimation of body fatness in children and youth. Hum Biol, 60(5), 709-723.

Söğüt, M., Luz, L. G. O., Kaya, Ö. B., Altunsoy, K., Doğan, A. A., Kirazci, S., . . . Knechtle, B. (2019). Age- and Maturity-Related Variations in Morphology, Body Composition, and Motor Fitness among Young Female Tennis Players. International Journal of Environmental Research and Public Health, 16(13).

Son, Y., & Kim, W. (2020). Missing Value Imputation in Stature Estimation by Learning Algorithms Using Anthropometric Data: A Comparative Study. Applied Sciences, 10(14).

Team, R. C. (2017). R: A language and environment for statistical computing [Computer software]. Retrieved from

Till, K., & Baker, J. (2020). Challenges and [Possible] Solutions to Optimizing Talent Identification and Development in Sport. Frontiers in Psychology, 11.

Vandenbroucke, J. P., Von Elm, E., Altman, D. G., Gøtzsche, P. C., Mulrow, C. D., Pocock, S. J., . . . Egger, M. (2009). Mejorar la comunicación de estudios observacionales en epidemiología (STROBE): explicación y elaboración. Gaceta Sanitaria, 23(2), 158.e151-158.e128.

Visnapuu, M., & Jürimäe, T. (2007). Handgrip Strength and Hand Dimensions in Young Handball and Basketball Players. The Journal of Strength and Conditioning Research, 21(3).

von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gotzsche, P. C., Vandenbroucke, J. P., & Initiative, S. (2014). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg, 12(12), 1495-1499.

Wittek, P. (2014). Unsupervised Learning. In Quantum Machine Learning (pp. 57-62).

World Medical Association. (2002). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Nurs Ethics, 9(1), 105-109.

Zemski, A. J., Keating, S. E., Broad, E. M., & Slater, G. J. (2018). Longitudinal Changes in Body Composition Assessed Using DXA and Surface Anthropometry Show Good Agreement in Elite Rugby Union Athletes. Int J Sport Nutr Exerc Metab, 1-8.



How to Cite

Bonilla, D. A., Peralta, J. O., Bonilla, J. A., Urrutia-Mosquera, W., Vargas-Molina, S., Cannataro, R., & Petro, J. L. (2020). Morphology, body composition and maturity status of young Colombian athletes from the Urabá subregion: A k-Medoids and hierarchical clustering analysis. Journal of Human Sport and Exercise, 15(4proc), S1367-S1386. Retrieved from

Most read articles by the same author(s)