Effect of simple home exercise focused on timing and coordination on lower-extremity function in non-disabled older persons: A quasi-randomized controlled trial

Authors

DOI:

https://doi.org/10.14198/jhse.2020.154.15

Keywords:

Non-disabled older persons, Lower-extremity function, Home based exercise, Health promotion

Abstract

Introduction: Lower-extremity function is a predictor of subsequent disability in non-disabled older persons. The present study aimed to determine the effect of simple home exercise focused on timing and coordination of movement on lower-extremity function in community dwelling non-disabled older persons. Materials and methods: Study design was a single-blind quasi-randomized controlled trial. The participants were 66 non-disabled older persons aged 60 years or older who independent activity of daily living and walking indoor and outdoor. They were devilled into intervention group (n = 34) and control group (n = 32). Participants in the control group participated in routine activities. The intervention group participated in a 1-month of simple home exercise focused on timing and coordination of movement consisted of calf raise, pivot turn and front stepping. Lower-extremity function was assessed by measuring maximum walking speed, figure-of-8 walk test, 3-m zigzag walk test and chair stand five test at baseline and at 1month after starting the intervention. Results: The intervention improved chair stand five test (8.8sec to 7.5sec; p < .05). There was no significant change in maximum walking speed, figure-of-8 walk test and 3-m zigzag walk test. The mean adherence rate of home exercise was 76.1 ± 17.4%. Conclusion: Simple home exercise focused on timing and coordination of movement is effective to improve lower-extremity function in community dwelling non-disabled older persons.

Downloads

Download data is not yet available.

References

Albert, S. M., Bear-Lehman, J., & Anderson, S. J. (2015). Declines in mobility and changes in performance in the instrumental activities of daily living among mildly disabled community-dwelling older adults. J Gerontol A Biol Sci Med Sci, 70(1), 71–77. https://doi.org/10.1093/gerona/glu088

Ando, M., & Kamide, N. (2013). The reference values for the 5 m walking time in community-dwelling Japanese elderly people: Determination using the methodology meta-analysis. Sogo Rihabiriteshon, 41, 961-967. https://doi.org/10.11477/mf.1552110277 (In Japanese, English abstract)

Bland, K., Lowry, K., Krajek, A., Woods, T., & VanSwearingen, J. (2019). Spatiotemporal variability underlying skill in curved-path walking. Gait Posture, 67, 137-141. https://doi.org/10.1016/j.gaitpost.2018.10.001

Bohannon, R. W. (1995). Sit-to-stand test for measuring performance of lower extremity muscles. Percept Mot Skills, 80(1), 163-166. https://doi.org/10.2466/pms.1995.80.1.163

Bohannon, R. W. (2006). Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept Mot Skills, 103(1), 215-222. https://doi.org/10.2466/pms.103.1.215-222

Brach, J. S., Francois, S. J., VanSwearingen, J. M., Gilmore, S., Perera, S., & Studenski, S. A. (2016). Translation of a Motor Learning Walking Rehabilitation Program Into a Group-Based Exercise Program for Community-Dwelling Older Adults. PM R : the journal of injury, function, and rehabilitation, 8(6), 520–528. https://doi.org/10.1016/j.pmrj.2015.10.004

Glaister, B. C., Bernatz, G. C., Klute, G. K., & Orendurff, M. S. (2007). Video task analysis of turning during activities of daily living. Gait Posture, 25(2), 289-294. https://doi.org/10.1016/j.gaitpost.2006.04.003

Green, P., Woglom, A. E., Genereux, P., Maurer, M. S., Kirtane, A. J., Hawkey, M., … Kodali, S. (2012). Gait speed and dependence in activities of daily living in older adults with severe aortic stenosis. Clin Cardiol, 35(5), 307–314. https://doi.org/10.1002/clc.21974

Guralnik, J. M., Ferrucci, L., Simonsick, E. M., Salive, M. E., & Wallace, R. B. (1995). Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N Engl J Med, 332, 556-562. https://doi.org/10.1056/NEJM199503023320902

Hess, R. J., Brach, J. S., Piva, S. R., & VanSwearingen, J. M. (2010). Walking skill can be assessed in older adults: validity of the Figure-of-8 Walk Test. Phys Ther, 90(1), 89–99. https://doi.org/10.2522/ptj.20080121

Hiemstra, L. A., Lo, I. K., & Fowler, P. J. (2001). Effect of fatigue on knee proprioception: Implications for dynamic stabilization. J Orthop Sports Phys Ther, 31(10), 598-605. https://doi.org/10.2519/jospt.2001.31.10.598

Judge, J. O., Õunpuu, S., & Davis, R. B. (1996). Effects of Age on the Biomechanics and Physiology of Gait. Clin Geriatr Med, 12(4), 659-678. https://doi.org/10.1016/S0749-0690(18)30194-0

Lord, S. R., & Fitzpatrick, R. C. (2001). Choice stepping reaction time: A composite measure of falls risk in older people. J Gerontol A Biol Sci Med Sci, 56(10), M627-M632. https://doi.org/10.1093/gerona/56.10.M627

Lord, S. R., Murray, S. M., Chapman, K., Munro, B., & Tiedemann, A. (2002). Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci, 57(8), M539-M543. https://doi.org/10.1093/gerona/57.8.m539

Masuda, S., Suganuma, K., Kaneko, C., Hoshina, K., Suzuki, T., Serita, T., & Sakakibara, R. (2013). Prediction of Falls Using a 3-m Zigzag Walk Test. J Phys Ther Sci, 25(9), 1051–1054. https://doi.org/10.1589/jpts.25.1051

Mizota, K., Murata, S., Otao, H., Hachiya, M., Kubo, A., Kai, Y., Matsuo, N., Miyazaki, J., & Yamamoto, F. (2014). Validity and reliability of the Figure-of-8 Walk Test in which participants walk at maximum speeds. Jpn J Health Prom Phys Ther, 4(1), 1-6. https://doi.org/10.9759/hppt.4.1 (In Japanese, English abstract)

Odonkor, C. A., Thomas, J. C., Holt, N., Latham, N., Vanswearingen, J., Brach, J. S., … Bean, J. (2013). A comparison of straight- and curved-path walking tests among mobility-limited older adults. J Gerontol A Biol Sci Med Sci, 68(12), 1532–1539. https://doi.org/10.1093/gerona/glt060

Quach, L., Galica, A. M., Jones, R. N., Procter-Gray, E., Manor, B., Hannan, M. T., & Lipsitz, L. A. (2011). The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study. J Am Geriatr Soc, 59(6), 1069–1073. https://doi.org/10.1111/j.1532-5415.2011.03408.x

Ribeiro, F., & Oliveira, J. (2007). Aging effects on joint proprioception: The role of physical activity in proprioception preservation. Eur Rev Aging Phys Act, 4(2), 71-76. https://doi.org/10.1007/s11556-007-0026-x

Salbach, N. M., Mayo, N. E., Higgins, J., Ahmed, S., Finch, L. E., & Richards, C. L. (2001). Responsiveness and predictability of gait speed and other disability measures in acute stroke. Arch Phys Med Rehabil, 82(9), 1204-1212. https://doi.org/10.1053/apmr.2001.24907

Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M., … Guralnik, J. (2011). Gait speed and survival in older adults. JAMA, 305(1), 50–58. https://doi.org/10.1001/jama.2010.1923

Suzuki, T., Bean, J. F., & Fielding, R. A. (2001). Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J Am Geriatr Soc, 49(9), 1161-1167. https://doi.org/10.1046/j.1532-5415.2001.49232.x

Taylora, M., Dabnichki, P., & Strike, S. (2005). A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci, 24(4), 558-573. https://doi.org/10.1016/j.humov.2005.07.005

Thigpen, M. T., Light, K. E., Creel, G. L., & Flynn, S. M. (2000). Turning Difficulty Characteristics of Adults Aged 65 Years or Older. Phys Ther, 80(12), 1174-1187. https://doi.org/10.1093/ptj/80.12.1174

Tiedemann, A., Shimada, H., Sherrington, C., Murray, S., & Lord, S. (2008). The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing, 37(4), 430-435. https://doi.org/10.1093/ageing/afn100

VanSwearingen, J. M., Perera, S., Brach, J. S., Cham, R., Rosano, C., & Studenski, S. A. (2009). A randomized trial of two forms of therapeutic activity to improve walking: effect on the energy cost of walking. J Gerontol A Biol Sci Med Sci, 64(11), 1190–1198. https://doi.org/10.1093/gerona/glp098

VanSwearingen, J. M., Perera, S., Brach, J. S., Wert, D., & Studenski, S. A. (2011). Impact of exercise to improve gait efficiency on activity and participation in older adults with mobility limitations: a randomized controlled trial. Phys Ther, 91(12), 1740–1751. https://doi.org/10.2522/ptj.20100391

VanSwearingen, J. M., & Studenski, S. A. (2014). Aging, motor skill, and the energy cost of walking: implications for the prevention and treatment of mobility decline in older persons. J Gerontol A Biol Sci Med Sci, 69(11), 1429–1436. https://doi.org/10.1093/gerona/glu153

Whitney, S. L., Wrisley, D. M., Marchetti, G. F., Gee, M. A., Redfern, M. S., & Furman, J. M. (2005). Clinical Measurement of Sit-to-Stand Performance in People With Balance Disorders: Validity of Data for the Five-Times-Sit-to-Stand Test. Phys Ther, 85(10), 1034-1045. https://doi.org/10.1093/ptj/85.10.1034

Statistics

Statistics RUA

Published

2020-12-01

How to Cite

Fujii, K., Kobayashi, M., Saito, T., & Asakawa, Y. (2020). Effect of simple home exercise focused on timing and coordination on lower-extremity function in non-disabled older persons: A quasi-randomized controlled trial. Journal of Human Sport and Exercise, 15(4), 883–893. https://doi.org/10.14198/jhse.2020.154.15

Issue

Section

Sport Medicine, Nutrition & Health