The effects of betalain-rich concentrate supplementation in attenuating muscle damage following eccentric exercise
DOI:
https://doi.org/10.14198/jhse.2021.161.10Keywords:
Exercise recovery, Antioxidants, BeetrootAbstract
Betalains are bioactive pigments that have been shown to reduce muscle damage and enhance recovery from exercise. However, to date, studies have examined the effects of betalains on aerobic exercise alone, and thus, their possible benefits for muscle damage recovery following eccentric exercise is unknown. We, therefore, aimed to examine the effects of a betalain-rich concentrate (BRC) on indices of muscle damage following eccentric exercise. Eleven healthy, recreationally active males were randomly assigned into a treatment group (50 mg of BRC, containing 12.5 mg of betalains, 3 times per day for 3 days) or a control group and performed 30 maximal eccentric contractions of the elbow flexors. Maximal voluntary contraction (MVC), arm circumference (AC), muscle soreness (MS), and range of motion (ROM) were measured before, immediately after, and 24, 48, and 72 hr following eccentric exercise. Creatine kinase (CK) was measured before, 24, 48, and 72 hr following the eccentric exercise. No significant differences or interactions were observed for any of the variables (p = > .05); however, a non-significant trend with a large effect size (p = .07, ηp2 = .28) was found for the main effect for MVC. Although we failed to identify any statistically significant differences in any of the variables measured, the large effect size observed for MVC may have practical benefits in the enhancement of skeletal muscle recovery following eccentric exercise.
Funding
VDF FutureCeuticals, IncDownloads
References
Albano, C., Negro, C., Tommasi, N., Gerardi, C., Mita, G., Miceli, A., ... & Blando, F. (2015). Betalains, phenols and antioxidant capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) Genotypes. Antioxidants, 4, 269-280. https://doi.org/10.3390/antiox4020269
Bowtell, J., Sumners, D.P., Dyer, A., Fox, P., & Mileva, K. N. (2011). Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sport Exer, 43, 1544-151. https://doi.org/10.1249/mss.0b013e31820e5adc
Brockett, C. L., Morgan, D. L., Gregory, J. E., & Proske, U. (2002). Damage to different motor units from active lengthening of the medial gastrocnemius muscle of the cat. J Appl Physiol, 92, 1104-1110. https://doi.org/10.1152/japplphysiol.00479.2001
Chazaud, B. (2016). Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise‐induced muscle damage management. Immunol Cell Biol, 94, 140-145. https://doi.org/10.1038/icb.2015.97
Cintineo, H. P., Arent, M. A., Antonio, J., & Arent, S. M. (2018). Effects of Protein Supplementation on Performance and Recovery in Resistance and Endurance Training. Front Nutr, 5, 83. https://doi.org/10.3389/fnut.2018.00083
Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. Am J Phys Med Rehab, 81, S52-S69.
Close, G. L., Ashton, T., Cable, T., Doran, D., & MacLaren, D. P. (2004). Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. Eur J Appl Physiol, 91, 615-621. https://doi.org/10.1007/s00421-003-1012-2
Clifford, T., Bell, O., West, D. J., Howatson, G., & Stevenson, E. J. (2016). The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol, 116, 353–362. https://doi.org/10.1007/s00421-015-3290-x
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav Res Methods, 41, 1149-1160. https://doi.org/10.3758/brm.41.4.1149
El Gamal, A. A., AlSaid, M. S., Raish, M., Al-Sohaibani, M., Al-Massarani, S. M., Ahmad, A., ... & Rafatullah, S. (2014). Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediat Inflamm, (Article ID 983952), vol. 2014, (12 pages), June. https://doi.org/10.1155/2014/983952
Kamandulis, S., de Souza Leite, F., Hernández, A., Katz, A., Brazaitis, M., Bruton, J. D., ... & Subocius, A. (2017). Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species. FASEB J, 31, 4809-4820. https://doi.org/10.1096/fj.201700019R
Kanner, J., Harel, S., & Granit, R. (2001). Betalains a new class of dietary cationized antioxidants. J Agr Food Chem, 49, 5178–5185. https://doi.org/10.1021/jf010456f
Khan, M. I. (2016). Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci F, 15, 316–330. https://doi.org/10.1111/1541-4337.12185
Lamb, G. D., & Westerblad, H. (2011). Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J Physiology, 589, 2119-2127. https://doi.org/10.1113/jphysiol.2010.199059
Miguel, M. (2018). Betalains in some species of the Amaranthaceae family: a review. Antioxidants, 7, 53. https://doi.org/10.3390/antiox7040053
Montenegro, C. F., Kwong, D. A., Minow, Z. A., Davis, B. A., Lozada, C. F., & Casazza, G. A. (2016). Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nut Me, 42, 166–172. https://doi.org/10.1139/apnm-2016-0452
Paulsen, G., Ramer Mikkelsen, U., Raastad, T., & Peake, J. M. (2012). Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev, 18, 42-97.
Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. J Appl Physiol, 122, 559–570. https://doi.org/10.1152/japplphysiol.00971.2016
Pietrzkowski, Z., Nemzer, B., Spórna, A., Stalica, P., Tresher, W., Keller, R., … Wybraniec, S. (2010). Influence of betalain-rich extract on reduction of discomfort associated with osteoarthritis. New Medicine, 1, 12–17.
Place, N., Ivarsson, N., Venckunas, T., Neyroud, D., Brazaitis, M., Cheng, A. J., ... & Paužas, H. (2015). Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. PNAS, 122, 15492-15497. https://doi.org/10.1073/pnas.1507176112
Prasartwuth, O., Taylor, J. L., & Gandevia, S. C. (2005). Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. J Physiol, 567, 337-348. https://doi.org/10.1113/jphysiol.2005.087767
Sakihama, Y., Maeda, M., Hashimoto, M., Tahara, S., & Hashidoko, Y. (2012). Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage. Free Radical Res, 46, 93-99. https://doi.org/10.3109/10715762.2011.641157
Tesoriere, L., Allegra, M., Butera, D., & Livrea, M. A. (2004). Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr, 80, 941-945. https://doi.org/10.1093/ajcn/80.4.941
Van Hoorebeke, J., Trias, C., Davis, B., Lozada, C., & Casazza, G. (2016). Betalain-rich concentrate supplementation improves exercise performance in competitive runners. Sports, 4, 40. https://doi.org/10.3390/sports4030040
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.