Effects of acute caffeine on muscle damage biomarkers and time to exhaustion after a single session of resistance exercises followed by exhaustive incremental test in long-distance runners
DOI:
https://doi.org/10.14198/jhse.2021.162.11Keywords:
Ergogenic, Eccentric action, Myoglobin, Ryanodine receptor, SarcomereAbstract
The present study was designed to investigate the acute effect of caffeine on muscle damage biomarkers (creatine kinase, lactate dehydrogenase, creatine kinase MB, and myoglobin) measured before, immediately after, and 24 h after a single session of resistance exercises followed by exhaustive incremental test. In addition, the effect of caffeine intake on time to exhaustion during exhaustive incremental test was determined. Fifteen male long-distance runners (30.67 ± 3.40 yrs.) performed two consecutive trials (7 days apart). Athletes were assigned randomly either to ingest caffeine (6 mg/kg) 1 h prior to exercise or placebo using a double-blind crossover design. Each trial consisted of 5 resistance exercises followed by exhaustive incremental test. Blood samples were collected before, immediately, and 24 h after each trial. The independent t test of data showed no significant differences in biomarkers of muscle damage at all time points between trials (p > .05). Using paired sample t test, data revealed that caffeine increased the time to exhaustion (45.78 ± 2.42 min) during exhaustive incremental test compared to the placebo (43.83 ± 2.21 min) (p = .001). In conclusion, 6 mg/kg of caffeine 1 hour prior to resistance exercises followed by exhaustive incremental test had no effect on muscle damage biomarkers in long-distance runners probably due to mechanical stress precisely affected fast twitch fibres rather than slow twitch fibres. However, the increased time to exhaustion due to caffeine consume may attributed to dampened pain sensation.
Downloads
References
Astorino, T. A., Rohmann, R. L., & Firth, K. (2008). Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol, 102, 127-132. https://doi.org/10.1007/s00421-007-0557-x
Azevedo, R., Silva-Cavacante, M. D., Gualano, B., Lima-Silva, A. E., & Bertuzzi, R. (2016). Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol, 116, 2293-2303. https://doi.org/10.1007/s00421-016-3483-y
Barnes, J. N., Trombold, J. R., Dhindsa, M., Lin, H., & Tanaka, H. (2010). Arterial stiffness following eccentric exercise-induced muscle damage. J. Appl. Physiol., 109, 1102-1108. https://doi.org/10.1152/japplphysiol.00548.2010
Beck, T. W., Housh, T. J., Schmidt, R. J., Johnson, G. O., Housh, D. J., Coburn, J. W., & Malek, M. H. (2006). The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Journal of Strength and Conditioning Research, 20(3), 506-510. https://doi.org/10.1519/00124278-200608000-00008
Bishop, N. C., Fitzgerald, C., Potter, P. J., Scanlon, G. A., & Smith, A. C. (2005). Effect of caffeine ingestion on lymphocyte counts and subset activation in vivo following strenuous cycling. Eur J Appl Physiol, 93, 606-613. https://doi.org/10.1007/s00421-004-1271-6
Burt, D. G., Lamb, K., Nicholas, C., & Twist, C. (2014). Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption. European Journal of Sport Science, 14(4), 337-344. https://doi.org/10.1080/17461391.2013.783628
Caldwell, J. T., Wardlow, G. C., Branch, P. A., Ramos, M., Black, C. D., & Ade, C. J. (2016). Effect of exercise-induced muscle damage on vascular function and skeletal muscle microvascular deoxygenation. Physiological Reports, 4(22), 1-12. https://doi.org/10.14814/phy2.13032
Cechella, J. L., Leite, M. R., Dobrachinski, F., da Rocha, J. T., Carvalho, N. R., Duarte, M. M. M. F., Soares, F. A. A., Bresciani, G., Royes, L. F. F., & Zeni, G. (2014). Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats. Amino acid, 46(5), 1187-1195. https://doi.org/10.1007/s00726-014-1679-1
da Costa Santos, V. B., Ruiz, R. J., Vettorato, E. D., Nakamura, F. Y., Juliani, L. C., Polito, M. D., & Martin Siqueira, C.. P. C. (2011). Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol, 96(11), 1228-1238. https://doi.org/10.1113/expphysiol.2011.060483
Del Coso, J., Salinero, J. J., Abian-Vicen, J., Gonzalez-Millan, C., Garde, S., Vega, P., & Perez-Gnzalez, B. (2013). Influence of body mass loss and myoglobinuria on the development of muscle fatigue after a marathon in an environment. Appl. Physiol. Nutr. Metab., 38(3), 286-291. https://doi.org/10.1139/apnm-2012-0241
Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392-399. https://doi.org/10.1080/17461391.2011.635811
Glaister, M., Muniz-Pumares, D., Patterson, S. D., Foley, P., & Mcinnes, G. (2015). Caffeine supplementation and peak anaerobic power output. European Journal of Sport Sciences, 15(5), 400-406. https://doi.org/10.1080/17461391.2014.962619
Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Med, 31(11), 785-807. https://doi.org/10.2165/00007256-200131110-00002
Grgic, J., & Mikulic, P. (2017). Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. European Journal of Sport Science, 17(8), 1029-1036. https://doi.org/10.1080/17461391.2017.1330362
Horrigan, L.A., Kelly, J. P., & Connor, T. J. (2006). Immunomodulatory effects of caffeine: friend of foe?. Pharmacol Ther, 111, 877-892. https://doi.org/10.1016/j.pharmthera.2006.02.002
Hume, P. A., Cheung, K., Maxwell, L., & Weerapong, P. (2004). DOMS: An overview of treatment strategies. International SportMed Journal, 5(2).
Lee, C. L., Lin, J. C., & Cheng, C. F. (2011). Effect of creatine plus caffeine supplements on time to exhaustion during an incremental maximum exercise. European Journal of Sport Science, 12(4), 338-346. https://doi.org/10.1080/17461391.2011.573578
Lippi, G., Schena, F., Salvagno, G. L., Montagnana, M., Gelati, M., Tarperi, C., Banfi, G., & Guidi, G. C. (2008). Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. The Scandinavian Journal of Clinical & Laboratory Investigation, 68(7), 667-672. https://doi.org/10.1080/00365510802126844
Machado, M., Zovico, P. V. C., & da Silva, D. P. (2008). Caffeine does not increase resistance exercise-induced microdamage. J Exerc Sci Fit, 6(2), 115-120.
Mackey, A. L., & Kjaer, M. (2017). The breaking and making of healthy adult human skeletal muscle in vivo. Skeletal Muscle, 7(1), 101-124. https://doi.org/10.1186/s13395-017-0142-x
Marquez-Jimenez, D., Callega-Gonzalez, J., Arratibel-Imaz, I., Delextrat, A., Uriarte, F., & Terrados, N. (2018). Influence of different types of compression garments on exercise-induced muscle damage markers after a soccer match. Research In Sports Medicine, 26(1), 27-42. https://doi.org/10.1080/15438627.2017.1393755
Naclerio, F., Larumbe-Zabala, E., Cooper, R., Jimenez, A., & Goss-Sampson, M. (2014). Effect of a carbphydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes. Appl. Physiol. Nutr. Metab., 39, 1151-1158. https://doi.org/10.1139/apnm-2013-0556
Nawrot, P., Jordan, S., Eastwood, J., Rotestein, J., Hugenjoltz, A., & Feeley, M. (2003). Effects of caffeine on human health. Food Additives and Contaminations, 20(1), 1-30. https://doi.org/10.1080/0265203021000007840
Nosaka, K., Newton, M., & Sacco, P. (2002). Muscle damage and soreness after endurance exercise of the elbow flexors. Med Sci Sports Exerc, 34, 920-927. https://doi.org/10.1097/00005768-200206000-00003
Owens, D. J., Twist, C., Cobley, J. N., Howatson, G., & Close, G. L. (2019). Exercise-induced muscle damage: what is it, what cause it and what are the nutritional solutions?. European Journal of Sport science, 19(1), 71-85. https://doi.org/10.1080/17461391.2018.1505957
Ramos-Campo, D. J., Avila-Gandia, V., Alacid, F., Soto-Mendez, F., Alcaraz, P. E., Lopez-Roman, F. J., & Rubio-Arias, J. A. (2016). Muscle damage, physiological changes, and energy balance in ultra-endurance mountain-event athletes. Appl. Physiol. Nutr. Metab, 41, 872-878. https://doi.org/10.1139/apnm-2016-0093
Reolands B, & Meeusen R. (2012). Caffeine, dopamine and thermoregulation. Eur J Appl Physiol, 112: 1979-1980. https://doi.org/10.1007/s00421-011-2127-5
Soleimani, A., Shkerian, S., & Ranjbar, R. (2017). The effect of caffeine supplementation on serum sensitivity C-reactive protein and creatine kinase after exhausted aerobic exercise in active overweight university students. Journal of Birjand University of Medical Sciences, 24(2), 84-93.
Spradely, B. D., Crowley, K. R., Kristina, C. T., Kendall, K. L., Fukuda, D. H., Esposito, E. N., Moon, S. E., & Moon, J. R. (2012). Ingestion a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutrition & Metabolism, 9(28), 1-9. https://doi.org/10.1186/1743-7075-9-28
Spriet, L. L. (2014) Exercise and sport performance with low doses of caffeine. Sports Med, 44(Suppl 2), S175-S184. https://doi.org/10.1007/s40279-014-0257-8
Taipale, R. S., Schumann, M., Mikkola, J., Nyman, K., Kyrolainen, H., Nummela, A., & Hakkinen, K. (2014). Acute neuromuscular and metabolic responses to combined strength and endurance loadings: the “order effect” in recreationally endurance trained athletes. Journal of Sports Sciences, 32(12), 1155-1164. https://doi.org/10.1080/02640414.2014.889842
Tarnopolsky, M. A. (2010). Caffeine and creatine use in sport. Ann Nutr Metab, 57(suppl 2), 1-8.
Trexler, E. T., Smith-Ryan, A. E., Roelofs, E. J., Hirsch, K. R., & Mock, M. G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science, 16(6), 702-710. https://doi.org/10.1080/17461391.2015.1085097
Vieira, J. M., Carvalho, F. B., Gutierres, J. M., Soares, M. S. P., Oliveira, P. S., Rubin, M. A., Morsch, V. M., Schetinger, M. R., & Spanevello, R. M. (2017). Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and NA-K-ATPase activities and reduction of anxiolytic like-behaviour in rats. Redox Report, 22(6), 493-500. https://doi.org/10.1080/13510002.2017.1322739
Vikmoen, O., Raastad, T., Seynnes, O., Bergstrom, K., Ellefsen, S., & Ronnestad, B. R. (2016). Effects of heavy strength training on running performance and determinants of running performance in female endurance athletes. PLoS ONE, 11(3), 1-18. https://doi.org/10.1371/journal.pone.0150799
Willoughby, D. S., Spillane, M., & Schwarz, N. (2014). Heavy resistance training and supplementation with the alleged testosterone booster NMDA has no effect on body composition, muscle performance, and serum hormones associated with the hypothalamic-pituitary-gonadal axis in resistance-trained males. Journal of Sports Science and Medicine, 13, 192-199.
Woolf, K., Bidwell, W. K., & Carlson, A. G. (2008). The effect of caffeine as an ergogenic aid in anaerobic exercise. International Journal of Sport Nutrition and Exercise Metabolism, 18(4), 412-429. https://doi.org/10.1123/ijsnem.18.4.412
Wu, B., & Lin, J. (2010). Caffeine attenuates acute growth hormone response to a single bout of resistance exercise. Journal of Sports Science and Medicine, 9, 262-269.
Zainudin, H., Caszo, B. A., Knight, V. F., & Gnanou, J. V. (2019). Training induced oxidative stress-derived DNA and muscle damage in triathletes. Eurasian J Med, 51(2), 116-120.
Zarghami-Khameneh, A., & Jafari, A. (2014). The effect of different doses of caffeine and a single bout of resistance-exhaustive exercise on muscle damage indices in male volleyball players. Journal of Kashan University of Medical Sciences, 18(3), 220-228.
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.