Journal of Human Sport and Exercise

Effects of acute caffeine on muscle damage biomarkers and time to exhaustion after a single session of resistance exercises followed by exhaustive incremental test in long-distance runners

Mohammad Fayiz AbuMoh'd, Nabil Shamrokh, Ahmed S. Bataineh, Ramzi Al-Horani

Abstract

The present study was designed to investigate the acute effect of caffeine on muscle damage biomarkers (creatine kinase, lactate dehydrogenase, creatine kinase MB, and myoglobin) measured before, immediately after, and 24 h after a single session of resistance exercises followed by exhaustive incremental test. In addition, the effect of caffeine intake on time to exhaustion during exhaustive incremental test was determined. Fifteen male long-distance runners (30.67 ± 3.40 yrs.) performed two consecutive trials (7 days apart). Athletes were assigned randomly either to ingest caffeine (6 mg/kg) 1 h prior to exercise or placebo using a double-blind crossover design. Each trial consisted of 5 resistance exercises followed by exhaustive incremental test. Blood samples were collected before, immediately, and 24 h after each trial. The independent t test of data showed no significant differences in biomarkers of muscle damage at all time points between trials (p > .05). Using paired sample t test, data revealed that caffeine increased the time to exhaustion (45.78 ± 2.42 min) during exhaustive incremental test compared to the placebo (43.83 ± 2.21 min) (p = .001). In conclusion, 6 mg/kg of caffeine 1 hour prior to resistance exercises followed by exhaustive incremental test had no effect on muscle damage biomarkers in long-distance runners probably due to mechanical stress precisely affected fast twitch fibres rather than slow twitch fibres. However, the increased time to exhaustion due to caffeine consume may attributed to dampened pain sensation.


Keywords

Ergogenic; Eccentric action; Myoglobin; Ryanodine receptor; Sarcomere

References

Astorino, T. A., Rohmann, R. L., & Firth, K. (2008). Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol, 102, 127-132. https://doi.org/10.1007/s00421-007-0557-x

Azevedo, R., Silva-Cavacante, M. D., Gualano, B., Lima-Silva, A. E., & Bertuzzi, R. (2016). Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol, 116, 2293-2303. https://doi.org/10.1007/s00421-016-3483-y

Barnes, J. N., Trombold, J. R., Dhindsa, M., Lin, H., & Tanaka, H. (2010). Arterial stiffness following eccentric exercise-induced muscle damage. J. Appl. Physiol., 109, 1102-1108. https://doi.org/10.1152/japplphysiol.00548.2010

Beck, T. W., Housh, T. J., Schmidt, R. J., Johnson, G. O., Housh, D. J., Coburn, J. W., & Malek, M. H. (2006). The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. Journal of Strength and Conditioning Research, 20(3), 506-510. https://doi.org/10.1519/00124278-200608000-00008

Bishop, N. C., Fitzgerald, C., Potter, P. J., Scanlon, G. A., & Smith, A. C. (2005). Effect of caffeine ingestion on lymphocyte counts and subset activation in vivo following strenuous cycling. Eur J Appl Physiol, 93, 606-613. https://doi.org/10.1007/s00421-004-1271-6

Burt, D. G., Lamb, K., Nicholas, C., & Twist, C. (2014). Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption. European Journal of Sport Science, 14(4), 337-344. https://doi.org/10.1080/17461391.2013.783628

Caldwell, J. T., Wardlow, G. C., Branch, P. A., Ramos, M., Black, C. D., & Ade, C. J. (2016). Effect of exercise-induced muscle damage on vascular function and skeletal muscle microvascular deoxygenation. Physiological Reports, 4(22), 1-12. https://doi.org/10.14814/phy2.13032

Cechella, J. L., Leite, M. R., Dobrachinski, F., da Rocha, J. T., Carvalho, N. R., Duarte, M. M. M. F., Soares, F. A. A., Bresciani, G., Royes, L. F. F., & Zeni, G. (2014). Moderate swimming exercise and caffeine supplementation reduce the levels of inflammatory cytokines without causing oxidative stress in tissues of middle-aged rats. Amino acid, 46(5), 1187-1195. https://doi.org/10.1007/s00726-014-1679-1

da Costa Santos, V. B., Ruiz, R. J., Vettorato, E. D., Nakamura, F. Y., Juliani, L. C., Polito, M. D., & Martin Siqueira, C.. P. C. (2011). Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol, 96(11), 1228-1238. https://doi.org/10.1113/expphysiol.2011.060483

Del Coso, J., Salinero, J. J., Abian-Vicen, J., Gonzalez-Millan, C., Garde, S., Vega, P., & Perez-Gnzalez, B. (2013). Influence of body mass loss and myoglobinuria on the development of muscle fatigue after a marathon in an environment. Appl. Physiol. Nutr. Metab., 38(3), 286-291. https://doi.org/10.1139/apnm-2012-0241

Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392-399. https://doi.org/10.1080/17461391.2011.635811

Glaister, M., Muniz-Pumares, D., Patterson, S. D., Foley, P., & Mcinnes, G. (2015). Caffeine supplementation and peak anaerobic power output. European Journal of Sport Sciences, 15(5), 400-406. https://doi.org/10.1080/17461391.2014.962619

Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Med, 31(11), 785-807. https://doi.org/10.2165/00007256-200131110-00002

Grgic, J., & Mikulic, P. (2017). Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. European Journal of Sport Science, 17(8), 1029-1036. https://doi.org/10.1080/17461391.2017.1330362

Horrigan, L.A., Kelly, J. P., & Connor, T. J. (2006). Immunomodulatory effects of caffeine: friend of foe?. Pharmacol Ther, 111, 877-892. https://doi.org/10.1016/j.pharmthera.2006.02.002

Hume, P. A., Cheung, K., Maxwell, L., & Weerapong, P. (2004). DOMS: An overview of treatment strategies. International SportMed Journal, 5(2).

Lee, C. L., Lin, J. C., & Cheng, C. F. (2011). Effect of creatine plus caffeine supplements on time to exhaustion during an incremental maximum exercise. European Journal of Sport Science, 12(4), 338-346. https://doi.org/10.1080/17461391.2011.573578

Lippi, G., Schena, F., Salvagno, G. L., Montagnana, M., Gelati, M., Tarperi, C., Banfi, G., & Guidi, G. C. (2008). Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. The Scandinavian Journal of Clinical & Laboratory Investigation, 68(7), 667-672. https://doi.org/10.1080/00365510802126844

Machado, M., Zovico, P. V. C., & da Silva, D. P. (2008). Caffeine does not increase resistance exercise-induced microdamage. J Exerc Sci Fit, 6(2), 115-120.

Mackey, A. L., & Kjaer, M. (2017). The breaking and making of healthy adult human skeletal muscle in vivo. Skeletal Muscle, 7(1), 101-124. https://doi.org/10.1186/s13395-017-0142-x

Marquez-Jimenez, D., Callega-Gonzalez, J., Arratibel-Imaz, I., Delextrat, A., Uriarte, F., & Terrados, N. (2018). Influence of different types of compression garments on exercise-induced muscle damage markers after a soccer match. Research In Sports Medicine, 26(1), 27-42. https://doi.org/10.1080/15438627.2017.1393755

Naclerio, F., Larumbe-Zabala, E., Cooper, R., Jimenez, A., & Goss-Sampson, M. (2014). Effect of a carbphydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes. Appl. Physiol. Nutr. Metab., 39, 1151-1158. https://doi.org/10.1139/apnm-2013-0556

Nawrot, P., Jordan, S., Eastwood, J., Rotestein, J., Hugenjoltz, A., & Feeley, M. (2003). Effects of caffeine on human health. Food Additives and Contaminations, 20(1), 1-30. https://doi.org/10.1080/0265203021000007840

Nosaka, K., Newton, M., & Sacco, P. (2002). Muscle damage and soreness after endurance exercise of the elbow flexors. Med Sci Sports Exerc, 34, 920-927. https://doi.org/10.1097/00005768-200206000-00003

Owens, D. J., Twist, C., Cobley, J. N., Howatson, G., & Close, G. L. (2019). Exercise-induced muscle damage: what is it, what cause it and what are the nutritional solutions?. European Journal of Sport science, 19(1), 71-85. https://doi.org/10.1080/17461391.2018.1505957

Ramos-Campo, D. J., Avila-Gandia, V., Alacid, F., Soto-Mendez, F., Alcaraz, P. E., Lopez-Roman, F. J., & Rubio-Arias, J. A. (2016). Muscle damage, physiological changes, and energy balance in ultra-endurance mountain-event athletes. Appl. Physiol. Nutr. Metab, 41, 872-878. https://doi.org/10.1139/apnm-2016-0093

Reolands B, & Meeusen R. (2012). Caffeine, dopamine and thermoregulation. Eur J Appl Physiol, 112: 1979-1980. https://doi.org/10.1007/s00421-011-2127-5

Soleimani, A., Shkerian, S., & Ranjbar, R. (2017). The effect of caffeine supplementation on serum sensitivity C-reactive protein and creatine kinase after exhausted aerobic exercise in active overweight university students. Journal of Birjand University of Medical Sciences, 24(2), 84-93.

Spradely, B. D., Crowley, K. R., Kristina, C. T., Kendall, K. L., Fukuda, D. H., Esposito, E. N., Moon, S. E., & Moon, J. R. (2012). Ingestion a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutrition & Metabolism, 9(28), 1-9. https://doi.org/10.1186/1743-7075-9-28

Spriet, L. L. (2014) Exercise and sport performance with low doses of caffeine. Sports Med, 44(Suppl 2), S175-S184. https://doi.org/10.1007/s40279-014-0257-8

Taipale, R. S., Schumann, M., Mikkola, J., Nyman, K., Kyrolainen, H., Nummela, A., & Hakkinen, K. (2014). Acute neuromuscular and metabolic responses to combined strength and endurance loadings: the “order effect” in recreationally endurance trained athletes. Journal of Sports Sciences, 32(12), 1155-1164. https://doi.org/10.1080/02640414.2014.889842

Tarnopolsky, M. A. (2010). Caffeine and creatine use in sport. Ann Nutr Metab, 57(suppl 2), 1-8.

Trexler, E. T., Smith-Ryan, A. E., Roelofs, E. J., Hirsch, K. R., & Mock, M. G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science, 16(6), 702-710. https://doi.org/10.1080/17461391.2015.1085097

Vieira, J. M., Carvalho, F. B., Gutierres, J. M., Soares, M. S. P., Oliveira, P. S., Rubin, M. A., Morsch, V. M., Schetinger, M. R., & Spanevello, R. M. (2017). Caffeine prevents high-intensity exercise-induced increase in enzymatic antioxidant and NA-K-ATPase activities and reduction of anxiolytic like-behaviour in rats. Redox Report, 22(6), 493-500. https://doi.org/10.1080/13510002.2017.1322739

Vikmoen, O., Raastad, T., Seynnes, O., Bergstrom, K., Ellefsen, S., & Ronnestad, B. R. (2016). Effects of heavy strength training on running performance and determinants of running performance in female endurance athletes. PLoS ONE, 11(3), 1-18. https://doi.org/10.1371/journal.pone.0150799

Willoughby, D. S., Spillane, M., & Schwarz, N. (2014). Heavy resistance training and supplementation with the alleged testosterone booster NMDA has no effect on body composition, muscle performance, and serum hormones associated with the hypothalamic-pituitary-gonadal axis in resistance-trained males. Journal of Sports Science and Medicine, 13, 192-199.

Woolf, K., Bidwell, W. K., & Carlson, A. G. (2008). The effect of caffeine as an ergogenic aid in anaerobic exercise. International Journal of Sport Nutrition and Exercise Metabolism, 18(4), 412-429. https://doi.org/10.1123/ijsnem.18.4.412

Wu, B., & Lin, J. (2010). Caffeine attenuates acute growth hormone response to a single bout of resistance exercise. Journal of Sports Science and Medicine, 9, 262-269.

Zainudin, H., Caszo, B. A., Knight, V. F., & Gnanou, J. V. (2019). Training induced oxidative stress-derived DNA and muscle damage in triathletes. Eurasian J Med, 51(2), 116-120.

Zarghami-Khameneh, A., & Jafari, A. (2014). The effect of different doses of caffeine and a single bout of resistance-exhaustive exercise on muscle damage indices in male volleyball players. Journal of Kashan University of Medical Sciences, 18(3), 220-228.




DOI: https://doi.org/10.14198/jhse.2021.162.11





Copyright (c) 2018 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.