External and internal training load relationships in soccer players
DOI:
https://doi.org/10.14198/jhse.2021.162.07Keywords:
Sports performance, Total distance, Acceleration, Deceleration, Rating of perceived exertion, Heart rateAbstract
The aim of the present study was to examine the relationships between internal training loads (TL) (Polar (PLR), Edwards (EDW) Training-Impulse (TRIMP) session RPE (s-RPE) external TL (Total distance (TD), covered distance in five different zone, number of acceleration (ACC) and deceleration actions (DEC) in professional soccer players. Twenty male professional soccer players (age = 27.6 years; height = 177.6 ± 7.1 cm; body mass = 69 ± 8.3 kg) from a professional soccer team voluntarily participated in the study. The correlations between the values were examined individually for each athlete by Pearson correlation test. According to the results of this study showed that there were very large and nearly perfect relations between s-RPE and both HR-based methods (EDW and PLR TRIMP) (respectively, r = .51 - .91; r = .44 -. 90). Additionally, from moderate to large correlations were observed between internal TL methods and external TL methods (walking, number of ACC-DEC actions) (between r = .56 - .82). Moreover, the relations between internal load and external load parameters were weakened in high-speed zones. According to the results of the current study, meanwhile s-RPE may be evaluated in practice as a useful and inexpensive for monitoring the internal TL method, the number of ACC and DEC actions could be appropriate for external TL.
Downloads
References
Abbott, W., Brickley, G., Smeeton, N. J., & Mills, S. (2018). Individualizing acceleration in english premier league academy soccer players. Journal of Strength and Conditioning Research, 32(12), 3503–3510. https://doi.org/10.1519/jsc.0000000000002875
Alexandre, D., Silva, C. D. Da, Hill-Haas, S., Wong, D. P., Natali, A. J., De Lima, J. R. P., … Karim, C. (2012, October). Heart ratemonitoring in soccer: Interest and limits during competitive match play and training, practical application. Journal of Strength and Conditioning Research, Vol. 26, pp. 2890–2906. https://doi.org/10.1519/JSC.0b013e3182429ac7
Bangsbo, J. (1994). The physiology of soccer - With special reference to intense intermittent exercise. Acta Physiologica Scandinavica, Supplement, 151(619), 1–155.
Barris, S., & Button, C. (2008). A review of vision-based motion analysis in sport. Sports Medicine, Vol. 38, pp. 1025–1043. https://doi.org/10.2165/00007256-200838120-00006
Bartlett, J. D., O’Connor, F., Pitchford, N., Torres-Ronda, L., & Robertson, S. J. (2017). Relationships between internal and external training load in team-sport athletes: Evidence for an individualized approach. International Journal of Sports Physiology and Performance, 12(2), 230–234. https://doi.org/10.1123/ijspp.2015-0791
Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., … Cable, N. T. (2017). S2-161 Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12. https://doi.org/10.1123/IJSPP.2017-0208
Boyd, L. J., Ball, K., & Aughey, R. J. (2013). Quantifying external load in australian football matches and training using accelerometers. International Journal of Sports Physiology and Performance, 8(1), 44–51. https://doi.org/10.1123/ijspp.8.1.44
Bradley, P. S., Di Mascio, M., Peart, D., Olsen, P., & Sheldon, B. (2010). High-intensity activity profiles of elite soccer players at different performance levels. Journal of Strength and Conditioning Research, 24(9), 2343–2351. https://doi.org/10.1519/JSC.0b013e3181aeb1b3
Casamichana, D., Castellano, J., Calleja-Gonzalez, J., RomaN, J. S., & Castagna, C. (2013). Relationship between indicators of training load in soccer players. Journal of Strength and Conditioning Research, 27(2), 369–374. https://doi.org/10.1519/JSC.0b013e3182548af1
Castillo, D., Weston, M., McLaren, S. J., Cámara, J., & Yanci, J. (2017). Relationships between internal and external match-load indicators in soccer match officials. International Journal of Sports Physiology and Performance, 12(7), 922–927. https://doi.org/10.1123/ijspp.2016-0392
Clarke, N., Farthing, J. P., Norris, S. R., Arnold, B. E., & Lanovaz, J. L. (2013). Quantification of training load in Canadian football: Application of session-RPE in collision-based team sports. Journal of Strength and Conditioning Research, 27(8), 2198–2205. https://doi.org/10.1519/JSC.0b013e31827e1334
Dalen, T., JØrgen, I., Gertjan, E., Havard, H. G., & Ulrik, W. (2016). Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. Journal of Strength and Conditioning Research, 30(2), 351–359. https://doi.org/10.1519/JSC.0000000000001063
Foster, C. (1998). Monitoring training in athletes with reference to overtraining syndrome. In Med. Sci. Sports Exerc (Vol. 30).
Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., … Dodge, C. (2001). A New Approach to Monitoring Exercise Training. In Journal of Strength and Conditioning Research (Vol. 15). https://doi.org/10.1519/00124278-200102000-00019
Gaudino, P., Alberti, G., & Iaia, F. M. (2014). Estimated metabolic and mechanical demands during different small-sided games in elite soccer players. Human Movement Science, 36, 123–133. https://doi.org/10.1016/j.humov.2014.05.006
Gomez-Piriz, P. T., JiméNez-Reyes, P., & Ruiz-Ruiz, C. (2011). Relation between total body load and session rating of perceived exertion in professional soccer players. Journal of Strength and Conditioning Research, 25(8), 2100–2103. https://doi.org/10.1519/JSC.0b013e3181fb4587
Güvenç, A., Açikada, C., Aslan, A., & Özer, K. (2011). Daily physical activity and physical fitness in 11-to 15-year-old trained and untrained Turkish boys. Journal of Sports Science and Medicine, 10(3), 502–514.
Halson, S. L. (2014, November 1). Monitoring Training Load to Understand Fatigue in Athletes. Sports Medicine, Vol. 44, pp. 139–147. https://doi.org/10.1007/s40279-014-0253-z
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009, January). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, Vol. 41, pp. 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278
Ian Lambert, M., & Borresen, J. (2010, September). Measuring training load in sports. International Journal of Sports Physiology and Performance, Vol. 5, pp. 406–411. https://doi.org/10.1123/ijspp.5.3.406
Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). Use of RPE-based training load in soccer. Medicine and Science in Sports and Exercise, 36(6), 1042–1047. https://doi.org/10.1249/01.MSS.0000128199.23901.2F
Lupo, C., Tessitore, A., Gasperi, L., & Gomez, M. A. R. (2017). Session-RPE for quantifying the load of different youth basketball training sessions. Biology of Sport, 34(1), 11–17. https://doi.org/10.5114/biolsport.2017.63381
Manzi, V., D’ottavio, S., Impellizzeri, F. M., Chaouachi, A., Chamari, K., & Castagna, C. (2010). Profile of weekly training load in elite male professional basketball players. Journal of Strength and Conditioning Research, 24(5), 1399–1406. https://doi.org/10.1519/JSC.0b013e3181d7552a
McLaren, S. J., Smith, A., Spears, I. R., & Weston, M. (2017). A detailed quantification of differential ratings of perceived exertion during team-sport training. Journal of Science and Medicine in Sport, 20(3), 290–295. https://doi.org/10.1016/j.jsams.2016.06.011
Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519–528. https://doi.org/10.1080/0264041031000071182
Morgan, W. P. (1973). Psychological factors influencing perceived exertion. Medicine and Science in Sports, 5(2), 97–103. https://doi.org/10.1249/00005768-197300520-00019
Osgnach, C., Poser, S., Bernardini, R., Rinaldo, R., & Di Prampero, P. E. (2010). Energy cost and metabolic power in elite soccer: A new match analysis approach. Medicine and Science in Sports and Exercise, 42(1), 170–178. https://doi.org/10.1249/MSS.0b013e3181ae5cfd
Paulson, T. A. W., Mason, B., Rhodes, J., & Goosey-Tolfrey, V. L. (2015). Individualized Internal and External Training Load Relationships in Elite Wheelchair Rugby Players. Frontiers in Physiology, 6. https://doi.org/10.3389/fphys.2015.00388
Scanlan, A. T., Wen, N., Tucker, P. S., Borges, N. R., & Dalbo, V. J. (2014). Training mode’s influence on the relationships between training-load models during basketball conditioning. International Journal of Sports Physiology and Performance, 9(5), 851–856. https://doi.org/10.1123/ijspp.2013-0410
Scanlan, A. T., Wen, N., Tucker, P. S., & Dalbo, V. J. (2014). The relationships between internal and external training load models during basketball training. Journal of Strength and Conditioning Research, 28(9), 2397–2405. https://doi.org/10.1519/JSC.0000000000000458
Schwellnus, M., Soligard, T., Alonso, J. M., Bahr, R., Clarsen, B., Dijkstra, H. P., … Engebretsen, L. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. British Journal of Sports Medicine, 50(17), 1043–1052. https://doi.org/10.1136/bjsports-2016-096572
Scott, B. R., Lockie, R. G., Knight, T. J., Clark, A. C., & Janse De Jonge, X. A. K. (2013). A Comparison of Methods to Quantify the In-Season Training Load of Professional Soccer Players. In International Journal of Sports Physiology and Performance. https://doi.org/10.1123/ijspp.8.2.195
Scott, T. J., Black, C. R., Quinn, J., & Coutts, A. J. (2013). Validity and reliability of the session-rpe method forquantifying training in australian football: A comparison of the cr10 and cr100 scales. Journal of Strength and Conditioning Research, 27(1), 270–276. https://doi.org/10.1519/JSC.0b013e3182541d2e
Singh, F., Foster, C., Tod, D., & McGuigan, M. R. (2007). Monitoring different types of resistance training using session rating of perceived exertion. International Journal of Sports Physiology and Performance, 2(1), 34–45. https://doi.org/10.1123/ijspp.2.1.34
Soligard, T., Schwellnus, M., Alonso, J. M., Bahr, R., Clarsen, B., Dijkstra, H. P., … Engebretsen, L. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine, 50(17), 1030–1041. https://doi.org/10.1136/bjsports-2016-096581
Varley, M. C., & Aughey, R. J. (2013). Acceleration profiles in elite Australian soccer. International Journal of Sports Medicine, 34(1), 34–39. https://doi.org/10.1055/s-0032-1316315
Vázquez-Guerrero, J., Suarez-Arrones, L., Gómez, D. C., & Rodas, G. (2018). Comparing external total load, acceleration and deceleration outputs in elite basketball players across positions during match play. Kinesiology, 50(2), 228–234. https://doi.org/10.26582/K.50.2.11
Wallace, L. K., Slattery, K. M., & Coutts, A. J. (2014). A comparison of methods for quantifying training load: Relationships between modelled and actual training responses. European Journal of Applied Physiology, 114(1), 11–20. https://doi.org/10.1007/s00421-013-2745-1
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.