The effects of two weeks low-volume self-regulated high-intensity interval training on cardiorespiratory fitness, exercise enjoyment, and intentions to repeat
Abstract
This study investigated the effect of low-volume self-regulated high-intensity interval training (SR-HIIT) on cardiorespiratory fitness (CRF), exercise enjoyment, and intentions to repeat. Ten untrained, physically active adults (five males and five females, age: 20.3 ± 0.5 years) undertook a 2-week control period followed by 2-weeks SR-HIIT (6 x 10 min cycle ergometer sessions). Sessions involved alternate bouts at a rating of perceived exertion of 17 (work) and 11 (recovery), with bout durations self-regulated by the participant. Maximal aerobic capacity showed a small increase from post-control (3.14 ± 1.03 L.min-1) to post-training (3.45 ± 1.14 L.min-1; diff 0.31, 95%CI 0.06 L.min-1, d = 0.28, 95%CL 0.11, 0.45). First ventilatory threshold showed a large increase from post-control (65.6 ± 2.1% V̇O2max) to post-training (68.0 ± 2.4% V̇O2max; diff 2.4, 95%CI 1.2%, d = 0.96, 95%CL 0.27, 1.62). Post-exercise enjoyment showed small ( diff 3.5, 95%CI 8.1 AU, d = 0.31) and medium ( diff 6.9, 95%CI 6.7 AU, d = 0.68) increases from SR-HIIT session 1-3 and 3-6, respectively. There were trivial to medium increases in intention to repeat SR-HIIT once per week (d = 0.06 to 0.63) and three times per week (d = 0.28 to 0.60). Low-volume SR-HIIT elicits meaningful improvements in CRF, is enjoyable, and facilitates good intentions to repeat, and may be an additional option for implementing HIIT to improve general population health and fitness.
Keywords
References
Algina, J., & Keselman, H. J. (2003). Approximate confidence intervals for effect sizes. Educ Psychol Meas, 63(4), 537-553. https://doi.org/10.1177/0013164403256358
Allison, M. K., Baglole, J. H., Martin, B. J., Macinnis, M. J., Gurd, B. J., & Gibala, M. J. (2017). Brief Intense Stair Climbing Improves Cardiorespiratory Fitness (vol 49, pg 298, 2017). Med Sci Sports Exerc, 49(3), 626-626. https://doi.org/10.1249/mss.0000000000001188
American College of Sports Medicine. (2017). ACSMs Guidelines for Exercise Testing and Prescription (10 ed.). Philadelphia, Pennsylvania: Wolters Kluwer.
Astorino, T. A., Edmunds, R. M., Clark, A., King, L., Gallant, R. A., Namm, S., . . . Wood, K. M. (2017). High-Intensity Interval Training Increases Cardiac Output and V O2max. Med Sci Sports Exerc, 49(2), 265-273. https://doi.org/10.1249/mss.0000000000001099
Bacon, A. P., Carter, R. E., Ogle, E. A., & Joyner, M. J. (2013). VO(2)max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. Plos One, 8(9). https://doi.org/10.1371/journal.pone.0073182
Batacan, R. B., Duncan, M. J., Dalbo, V. J., Tucker, P. S., & Fenning, A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med, 51(6). https://doi.org/10.1136/bjsports-2015-095841
Bayati, M., Farzad, B., Gharakhanlou, R., & Agha-Alinejad, H. (2011). A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med, 10(3), 571-576.
Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A New Method for Detecting Anaerobic Threshold by Gas-Exchange. J Appl Physiol, 60(6), 2020-2027. https://doi.org/10.1152/jappl.1986.60.6.2020
Biddle, S. J. H., & Batterham, A. M. (2015). High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act, 12. https://doi.org/10.1186/s12966-015-0254-9
Bradley, C., Niven, A., & Phillips, S. M. (2019). Self-reported tolerance of the intensity of exercise influences affective responses to and intentions to engage with high-intensity interval exercise. J Sports Sci, 37(13), 1472-1480. https://doi.org/10.1080/02640414.2019.1570590
Burgomaster, K. A., Heigenhauser, G. J. F., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol, 100(6), 2041-2047. https://doi.org/10.1152/japplphysiol.01220.2005
Calin-Jageman, R. J., & Cumming, G. (2019). The New Statistics for Better Science: Ask How Much, How Uncertain, and What Else Is Known. Am Stat, 73, 271-280. https://doi.org/10.31234/osf.io/3mztg
Ciolac, E. G., Mantuani, S. S., Neiva, C. M., Verardi, C. E. L., Pessoa, D. M., & Pimenta, L. (2015). Rating of perceived exertion as a tool for prescribing and self regulating interval training: a pilot study. Biol Sport, 32(2), 103-108. https://doi.org/10.5604/20831862.1134312
Cohen, J. (1992). A Power Primer. Psychol Bull, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
Ekkekakis, P., Parfitt, G., & Petruzzello, S. J. (2011). The Pleasure and Displeasure People Feel When they Exercise at Different Intensities Decennial Update and Progress towards a Tripartite Rationale for Exercise Intensity Prescription. Sports Med, 41(8), 641-671. https://doi.org/10.2165/11590680-000000000-00000
Ekkekakis, P., & Petruzzello, S. J. (1999). Acute aerobic exercise and affect - Current status, problems and prospects regarding dose-response. Sports Med, 28(5), 337-374. https://doi.org/10.2165/00007256-199928050-00005
Eskelinen, J. J., Heinonen, I., Loyttyniemi, E., Hakala, J., Heiskanen, M. A., Motiani, K. K., . . . Kalliokoski, K. K. (2016). Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men. J Physiol, 594(23), 7127-7140. https://doi.org/10.1113/jp273089
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., . . . Med, A. C. S. (2011). Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med Sci Sports Exerc, 43(7), 1334-1359. https://doi.org/10.1249/mss.0b013e318213fefb
Gillen, J. B., Percival, M. E., Skelly, L. E., Martin, B. J., Tan, R. B., Tarnopolsky, M. A., & Gibala, M. J. (2014). Three Minutes of All-Out Intermittent Exercise per Week Increases Skeletal Muscle Oxidative Capacity and Improves Cardiometabolic Health. Plos One, 9(11). https://doi.org/10.1371/journal.pone.0111489
Herdy, A. H., Ritt, L. E. F., Stein, R., de Araujo, C. G. S., Milani, M., Meneghelo, R. S., . . . Serra, S. M. (2016). Cardiopulmonary Exercise Test: Background, Applicability and Interpretation. Arq Bras Cardiol, 107(5), 467-481. https://doi.org/10.5935/abc.20160171
Hoekstra, S. P., Bishop, N. C., & Leicht, C. A. (2017). Can intervals enhance the inflammatory response and enjoyment in upper-body exercise? Eur J Appl Physiol, 117(6), 1155-1163. https://doi.org/10.1007/s00421-017-3602-4
Ivarsson, A., Andersen, M., Johnson, U., & Lindwall, M. (2013). To adjust or not adjust: Nonparametric effect sizes, confidence intervals, and real-world meaning. Psychol Sport Exerc, 14(1), 97-102. https://doi.org/10.1016/j.psychsport.2012.07.007
Jung, M. E., Bourne, J. E., & Little, J. P. (2014). Where Does HIT Fit? An Examination of the Affective Response to High-Intensity Intervals in Comparison to Continuous Moderate- and Continuous Vigorous-Intensity Exercise in the Exercise Intensity-Affect Continuum. Plos One, 9(12). https://doi.org/10.1371/journal.pone.0114541
Kellogg, E., Cantacessi, C., McNamer, O., Holmes, H., von Bargen, R., Ramirez, R., . . . Astorino, T. A. (2019). Comparison of Psychological and Physiological Responses to Imposed vs. Self-selected High-Intensity Interval Training. J Str Cond Res, 33(11), 2945-2952. https://doi.org/10.1519/jsc.0000000000002528
Kendzierski, D., & Decarlo, K. J. (1991). Physical-Activity Enjoyment Scale - 2 Validation Studies. J Sport Exerc Psychol, 13(1), 50-64. https://doi.org/10.1123/jsep.13.1.50
Kunutsor, S. K., Kurl, S., Khan, H., Zaccardi, F., Rauramaa, R., & Laukkanen, J. A. (2017). Oxygen uptake at aerobic threshold is inversely associated with fatal cardiovascular and all-cause mortality events. Ann Med, 49(8), 698-709. https://doi.org/10.1080/07853890.2017.1367958
Larsen, R. G., Befroy, D. E., & Kent-Braun, J. A. (2013). High-intensity interval training increases in vivo oxidative capacity with no effect on P-i -> ATP rate in resting human muscle. Am J Physiol, 304(5), R333-R342. https://doi.org/10.1152/ajpregu.00409.2012
McEwan, G., Arthur, R., Phillips, S. M., Gibson, N. V., & Easton, C. (2018). Interval running with self-selected recovery: Physiology, performance, and perception. Eur J Sport Sci, 18(8), 1058-1067. https://doi.org/10.1080/17461391.2018.1472811
McPhee, J. S., Williams, A. G., Degens, H., & Jones, D. A. (2010). Inter-individual variability in adaptation of the leg muscles following a standardised endurance training programme in young women. Eur J Appl Physiol, 109(6), 1111-1118. https://doi.org/10.1007/s00421-010-1454-2
Myers, J., McAuley, P., Lavie, C. J., Despres, J. P., Arena, R., & Kokkinos, P. (2015). Physical Activity and Cardiorespiratory Fitness as Major Markers of Cardiovascular Risk: Their Independent and Interwoven Importance to Health Status. Prog Cardio Dis, 57(4), 306-314. https://doi.org/10.1016/j.pcad.2014.09.011
Niven, A., Thow, J., Holroyd, J., Turner, A. P., & Phillips, S. M. (2018). Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous high-intensity exercise in active, untrained, healthy males. J Sports Sci, 36(17), 1993-2001. https://doi.org/10.1080/02640414.2018.1430984
Nybo, L., Sundstrup, E., Jakobsen, M. D., Mohr, M., Hornstrup, T., Simonsen, L., . . . Krustrup, P. (2010). High-Intensity Training versus Traditional Exercise Interventions for Promoting Health. Med Sci Sports Exerc, 42(10), 1951-1958. https://doi.org/10.1249/mss.0b013e3181d99203
Parfitt, G., Rose, E. A., & Burgess, W. M. (2006). The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br J Health Psychol, 11, 39-53. https://doi.org/10.1348/135910705x43606
Phillips, S. M., Thompson, R., & Oliver, J. L. (2014). Overestimation of Required Recovery Time during Repeated Sprint Exercise with Self-Regulated Recovery. J Strength Cond Res, 28(12), 3385-3392. https://doi.org/10.1519/jsc.0000000000000529
Rhodes, R. E., & Kates, A. (2015). Can the Affective Response to Exercise Predict Future Motives and Physical Activity Behavior? A Systematic Review of Published Evidence. Ann Behav Med, 49(5), 715-731. https://doi.org/10.1007/s12160-015-9704-5
Ruffino, J. S., Songsorn, P., Haggett, M., Edmonds, D., Robinson, A. M., Thompson, D., & Vollaard, N. B. J. (2017). A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl Physiol Nutr Metab, 42(2), 202-208. https://doi.org/10.1139/apnm-2016-0497
Stork, M. J., Banfield, L. E., Gibala, M. J., & Ginis, K. A. M. (2017). A scoping review of the psychological responses to interval exercise: is interval exercise a viable alternative to traditional exercise? Health Psychol Rev, 11(4), 324-344. https://doi.org/10.1080/17437199.2017.1326011
Vazou-Ekkekakis, S., & Ekkekakis, P. (2009). Affective consequences of imposing the intensity of physical activity: does the loss of perceived autonomy matter? Hell J Psychol, 6, 125-144.
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's Statement on p-Values: Context, Process, and Purpose. Am Stat, 70(2), 129-131. https://doi.org/10.1080/00031305.2016.1154108
Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019) Moving to a World Beyond “p < 0.05”, The American Statistician, 73:sup1, 1-19. https://doi.org/10.1080/00031305.2019.1583913
DOI: https://doi.org/10.14198/jhse.2021.162.15
Copyright (c) 2018 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.