Physiological profile of high intensity functional training athletes
DOI:
https://doi.org/10.14198/jhse.2021.163.16Keywords:
Physical fitness, CrossFit, General preparedness programs, Sports performance, Functional exerciseAbstract
Introduction: High intensity functional trainings (HIFT) are among the most common and popular training modalities. The aim of the present study was to examine the physiological characteristics of a group of HIFT competitive athletes both in a laboratory and field setting. Methods: Twenty HIFT athletes, 10 men (29 ± 5.3 years) and 10 women (30 ± 3.2 years), were evaluated in the laboratory for anthropometric characteristics, VO2peak, lactate threshold, maximal anaerobic power, maximal voluntary isometric and isokinetic strength, and muscle power during a countermovement jump. Athletes were also monitored in the field by measuring VO2 and lactate during a training session. Results: HIFT competitive athletes reached high levels in VO2peak (52.9 ± 5.67 ml·kg-1·min-1 in men; 52.4 ± 6.17 ml·kg-1·min-1 in women), VO2 at lactate threshold (79.7% of VO2peak in men; 74.5% of VO2peak in women), maximal anaerobic power (7.6 ± 1.32 W·kg-1 in men; 5.0 ± 1.13 W·kg-1 in women; p < .05), maximal voluntary knee extension isometric strength (11.7 ± 1.43 N·kg-1 in men; 9.5 ± 2.25 N·kg-1 in women; p < .05) and isokinetic strength (281.4 ± 31.56 N·kg-1 in men; 243.1 ± 44.13 N·kg-1 in women; p < .05), and muscle power during a countermovement jump (54 ± 5.9 W·kg-1 in men; 40 ± 4.8 W·kg-1 in women; p < .05). VO2peak during the on-field training session (50.6 ± 3.82 ml·kg-1·min-1 in men; 51.9 ± 5.76 ml·kg-1·min-1 in women) and lactate production (10.4 ± 0.69 mmol·l-1 in men; 9.7 ± 0.96 mmol·l-1 in women) revealed the high intensity nature of HIFT. Conclusions: Overall, HIFT athletes show exceptional performances in physiological components that are key to many different sports. The lack of specialization in exclusively one domain of physical fitness reveals the comprehensive nature of this training methodology.
Downloads
References
Adami, P. E., Delussu, A. S., Rodio, A., Squeo, M. R., Corsi, L., Quattrini, F. M., . . . Bernardi, M. (2015). Upper limb aerobic training improves aerobic fitness and all-out performance of America's Cup grinders. Eur J Sport Sci, 15(3), 235-241. https://doi.org/10.1080/17461391.2014.971878
Adami, P. E., Squeo, M. R., Quattrini, F. M., Di Paolo, F. M., Pisicchio, C., Di Giacinto, B., . . . Pelliccia, A. (2019). Pre-participation health evaluation in adolescent athletes competing at Youth Olympic Games: proposal for a tailored protocol. Br J Sports Med, 53(17), 1111-1116. https://doi.org/10.1136/bjsports-2018-099651
Alcaraz, P. E., Sanchez-Lorente, J., & Blazevich, A. J. (2008). Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J Strength Cond Res, 22(3), 667-671. https://doi.org/10.1519/jsc.0b013e31816a588f
Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol Sport, 32(4), 315-320. https://doi.org/10.5604/20831862.1174771
Bemben, M. G., Clasey, J. L., & Massey, B. H. (1990). The effect of the rate of muscle contraction on the force-time curve parameters of male and female subjects. Res Q Exerc Sport, 61(1), 96-99. https://doi.org/10.1080/02701367.1990.10607484
Borg, G. (1998). Borg's perceived exertion and pain scales: Human kinetics.
Butcher, S. J., Neyedly, T. J., Horvey, K. J., & Benko, C. R. (2015). Do physiological measures predict selected CrossFit((R)) benchmark performance? Open Access J Sports Med, 6, 241-247. https://doi.org/10.2147/oajsm.s88265
Ceccarelli, G., Pinacchio, C., Santinelli, L., Adami, P. E., Borrazzo, C., Cavallari, E. N., . . . d'Ettorre, G. (2019). Physical Activity and HIV: Effects on Fitness Status, Metabolism, Inflammation and Immune-Activation. AIDS Behav. https://doi.org/10.1007/s10461-019-02510-y
Clinical Exercise Testing. (2012). In K. H. J. Wasserman, D. Y. Sue, W. Stringer, K. E. Sietsema, X. G. Sun, & B. J. Whipp (Eds.), Principles of exercise testing and interpretation: Including pathophysiology and clinical applications (5th ed., pp. 129-153). Baltimore: Lippincott Williams & Wilkins.
Feito, Y., Hoffstetter, W., Serafini, P., & Mangine, G. (2018). Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS One, 13(6), e0198324. https://doi.org/10.1371/journal.pone.0198324
Fernandez-Fernandez, J., Sabido-Solana, R., Moya, D., Sarabia, J. M., & Moya, M. (2015). Acute physiological responses during crossfit® workouts. Eur J Hum Mov, 35, 1-25.
Gallagher, D., Heymsfield, S. B., Heo, M., Jebb, S. A., Murgatroyd, P. R., & Sakamoto, Y. (2000). Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr., 72(3), 694-701. https://doi.org/10.1093/ajcn/72.3.694
Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr Rev, 39(5), 803-829. https://doi.org/10.1210/er.2018-00020
Heinrich, K. M., Patel, P. M., O'Neal, J. L., & Heinrich, B. S. (2014). High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health, 14, 789. https://doi.org/10.1186/1471-2458-14-789
Hirschberg, A. L., Elings Knutsson, J., Helge, T., Godhe, M., Ekblom, M., Bermon, S., & Ekblom, B. (2019). Effects of moderately increased testosterone concentration on physical performance in young women: a double blind, randomised, placebo controlled study. Br J Sports Med. https://doi.org/10.1136/bjsports-2018-100525
Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. Br J Nutr, 40(3), 497-504. https://doi.org/10.1079/bjn19780152
Jackson, A. S., Pollock, M. L., & Ward, A. (1980). Generalized equations for predicting body density of women. Med Sci Sports Exerc, 12(3), 175-181. https://doi.org/10.1249/00005768-198023000-00009
Kelly, T. L., Wilson, K. E., & Heymsfield, S. B. (2009). Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One, 4(9), e7038. https://doi.org/10.1371/journal.pone.0007038
Labanca, L., Laudani, L., Menotti, F., Rocchi, J., Mariani, P. P., Giombini, A., . . . Macaluso, A. (2016). Asymmetrical Lower Extremity Loading Early After Anterior Cruciate Ligament Reconstruction Is a Significant Predictor of Asymmetrical Loading at the Time of Return to Sport. Am J Phys Med Rehabil, 95(4), 248-255. https://doi.org/10.1097/phm.0000000000000369
Macaluso, A., & De Vito, G. (2004). Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol, 91(4), 450-472. https://doi.org/10.1007/s00421-003-0991-3
Macaluso, A., Young, A., Gibb, K. S., Rowe, D. A., & De Vito, G. (2003). Cycling as a novel approach to resistance training increases muscle strength, power, and selected functional abilities in healthy older women. J Appl Physiol (1985), 95(6), 2544-2553. https://doi.org/10.1152/japplphysiol.00416.2003
Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W., & Hill, C. L. (2011). Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Res Notes, 4, 127. https://doi.org/10.1186/1756-0500-4-127
Mathiowetz, V., Kashman, N., Volland, G., Weber, K., Dowe, M., & Rogers, S. (1985). Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil, 66(2), 69-74.
Menotti, F., Bazzucchi, I., Felici, F., Damiani, A., Gori, M. C., & Macaluso, A. (2012). Neuromuscular function after muscle fatigue in Charcot-Marie-Tooth type 1A patients. Muscle Nerve, 46(3), 434-439. https://doi.org/10.1002/mus.23366
Murawska-Cialowicz, E., Wojna, J., & Zuwala-Jagiello, J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol, 66(6), 811-821.
Queiroga, M. R., Cavazzotto, T. G., Katayama, K. Y., Portela, B. S., Tartaruga, M. P., & Ferreira, S. A. (2013). Validity of the RAST for evaluating anaerobic power performance as compared to Wingate test in cycling athletes. Revista de Educação Física, 19(4), 696-702. https://doi.org/10.1590/s1980-65742013000400005
Rodriguez, N. R., DiMarco, N. M., & Langley, S. (2009). Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Am Diet Assoc, 109(3), 509-527. https://doi.org/10.1016/j.jada.2009.01.005
Sirico, F., Fernando, F., Di Paolo, F., Adami, P. E., Signorello, M. G., Sannino, G., . . . Biffi, A. (2019). Exercise stress test in apparently healthy individuals - where to place the finish line? The Ferrari corporate wellness programme experience. Eur J Prev Cardiol, 26(7), 731-738. https://doi.org/10.1177/2047487318825174
Stumbo, T. A., Merriam, S., Nies, K., Smith, A., Spurgeon, D., & Weir, J. P. (2001). The effect of hand-grip stabilization on isokinetic torque at the knee. J Strength Cond Res, 15(3), 372-377.
Thompson, W. R. (2013). Now trending: worldwide survey of fitness trends for 2014. ACSMʼs Health & Fitness Journal, 17(6), 10-20. https://doi.org/10.1249/fit.0000000000000252
Thompson, W. R. (2018). Worldwide Survey of Fitness Trends for 2019. ACSMʼs Health & Fitness Journal, 22(6), 10-17. https://doi.org/10.1249/fit.0000000000000438
Tibana, R., de Sousa, N., Prestes, J., & Voltarelli, F. (2018). Lactate, Heart Rate and Rating of Perceived Exertion Responses to Shorter and Longer Duration CrossFit® Training Sessions. J Funct Morphol Kinesiol, 3(4), 60. https://doi.org/10.3390/jfmk3040060
Wasserman, K., Beaver, W. L., & Whipp, B. J. (1986). Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc, 18(3), 344-352. https://doi.org/10.1249/00005768-198606000-00017
Zacharogiannis, E., Paradisis, G., & Tziortzis, S. (2004). An evaluation of tests of anaerobic power and capacity. Med Sci Sports Exerc, 36(5), S116. https://doi.org/10.1249/00005768-200405001-00549
Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res, 23(6), 1820-1827. https://doi.org/10.1519/jsc.0b013e3181b3df32
Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res, 23(9), 2598-2604. https://doi.org/10.1519/jsc.0b013e3181b1b21b
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.