Physiological profile of high intensity functional training athletes

Authors

  • Paolo Emilio Adami University of Rome “Foro Italico”, Italy
  • Jacopo Emanuele Rocchi University of Rome “Foro Italico”, Italy
  • Negassi Melke University of Rome “Foro Italico”, Italy
  • Andrea Macaluso University of Rome “Foro Italico”, Italy

DOI:

https://doi.org/10.14198/jhse.2021.163.16

Keywords:

Physical fitness, CrossFit, General preparedness programs, Sports performance, Functional exercise

Abstract

Introduction: High intensity functional trainings (HIFT) are among the most common and popular training modalities. The aim of the present study was to examine the physiological characteristics of a group of HIFT competitive athletes both in a laboratory and field setting. Methods: Twenty HIFT athletes, 10 men (29 ± 5.3 years) and 10 women (30 ± 3.2 years), were evaluated in the laboratory for anthropometric characteristics, VO2peak, lactate threshold, maximal anaerobic power, maximal voluntary isometric and isokinetic strength, and muscle power during a countermovement jump. Athletes were also monitored in the field by measuring VO2 and lactate during a training session. Results: HIFT competitive athletes reached high levels in VO2peak (52.9 ± 5.67 ml·kg-1·min-1 in men; 52.4 ± 6.17 ml·kg-1·min-1 in women), VO2 at lactate threshold (79.7% of VO2peak in men; 74.5% of VO2peak in women), maximal anaerobic power (7.6 ± 1.32 W·kg-1 in men; 5.0 ± 1.13 W·kg-1 in women; p < .05), maximal voluntary knee extension isometric strength (11.7 ± 1.43 N·kg-1 in men; 9.5 ± 2.25 N·kg-1 in women; p < .05) and isokinetic strength (281.4 ± 31.56 N·kg-1 in men; 243.1 ± 44.13 N·kg-1 in women; p < .05), and muscle power during a countermovement jump (54 ± 5.9 W·kg-1 in men; 40 ± 4.8 W·kg-1 in women; p < .05). VO2peak during the on-field training session (50.6 ± 3.82 ml·kg-1·min-1 in men; 51.9 ± 5.76 ml·kg-1·min-1 in women) and lactate production (10.4 ± 0.69 mmol·l-1 in men; 9.7 ± 0.96 mmol·l-1 in women) revealed the high intensity nature of HIFT. Conclusions: Overall, HIFT athletes show exceptional performances in physiological components that are key to many different sports. The lack of specialization in exclusively one domain of physical fitness reveals the comprehensive nature of this training methodology.

Downloads

Download data is not yet available.

References

Adami, P. E., Delussu, A. S., Rodio, A., Squeo, M. R., Corsi, L., Quattrini, F. M., . . . Bernardi, M. (2015). Upper limb aerobic training improves aerobic fitness and all-out performance of America's Cup grinders. Eur J Sport Sci, 15(3), 235-241. https://doi.org/10.1080/17461391.2014.971878

Adami, P. E., Squeo, M. R., Quattrini, F. M., Di Paolo, F. M., Pisicchio, C., Di Giacinto, B., . . . Pelliccia, A. (2019). Pre-participation health evaluation in adolescent athletes competing at Youth Olympic Games: proposal for a tailored protocol. Br J Sports Med, 53(17), 1111-1116. https://doi.org/10.1136/bjsports-2018-099651

Alcaraz, P. E., Sanchez-Lorente, J., & Blazevich, A. J. (2008). Physical performance and cardiovascular responses to an acute bout of heavy resistance circuit training versus traditional strength training. J Strength Cond Res, 22(3), 667-671. https://doi.org/10.1519/jsc.0b013e31816a588f

Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol Sport, 32(4), 315-320. https://doi.org/10.5604/20831862.1174771

Bemben, M. G., Clasey, J. L., & Massey, B. H. (1990). The effect of the rate of muscle contraction on the force-time curve parameters of male and female subjects. Res Q Exerc Sport, 61(1), 96-99. https://doi.org/10.1080/02701367.1990.10607484

Borg, G. (1998). Borg's perceived exertion and pain scales: Human kinetics.

Butcher, S. J., Neyedly, T. J., Horvey, K. J., & Benko, C. R. (2015). Do physiological measures predict selected CrossFit((R)) benchmark performance? Open Access J Sports Med, 6, 241-247. https://doi.org/10.2147/oajsm.s88265

Ceccarelli, G., Pinacchio, C., Santinelli, L., Adami, P. E., Borrazzo, C., Cavallari, E. N., . . . d'Ettorre, G. (2019). Physical Activity and HIV: Effects on Fitness Status, Metabolism, Inflammation and Immune-Activation. AIDS Behav. https://doi.org/10.1007/s10461-019-02510-y

Clinical Exercise Testing. (2012). In K. H. J. Wasserman, D. Y. Sue, W. Stringer, K. E. Sietsema, X. G. Sun, & B. J. Whipp (Eds.), Principles of exercise testing and interpretation: Including pathophysiology and clinical applications (5th ed., pp. 129-153). Baltimore: Lippincott Williams & Wilkins.

Feito, Y., Hoffstetter, W., Serafini, P., & Mangine, G. (2018). Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS One, 13(6), e0198324. https://doi.org/10.1371/journal.pone.0198324

Fernandez-Fernandez, J., Sabido-Solana, R., Moya, D., Sarabia, J. M., & Moya, M. (2015). Acute physiological responses during crossfit® workouts. Eur J Hum Mov, 35, 1-25.

Gallagher, D., Heymsfield, S. B., Heo, M., Jebb, S. A., Murgatroyd, P. R., & Sakamoto, Y. (2000). Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr., 72(3), 694-701. https://doi.org/10.1093/ajcn/72.3.694

Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr Rev, 39(5), 803-829. https://doi.org/10.1210/er.2018-00020

Heinrich, K. M., Patel, P. M., O'Neal, J. L., & Heinrich, B. S. (2014). High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health, 14, 789. https://doi.org/10.1186/1471-2458-14-789

Hirschberg, A. L., Elings Knutsson, J., Helge, T., Godhe, M., Ekblom, M., Bermon, S., & Ekblom, B. (2019). Effects of moderately increased testosterone concentration on physical performance in young women: a double blind, randomised, placebo controlled study. Br J Sports Med. https://doi.org/10.1136/bjsports-2018-100525

Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. Br J Nutr, 40(3), 497-504. https://doi.org/10.1079/bjn19780152

Jackson, A. S., Pollock, M. L., & Ward, A. (1980). Generalized equations for predicting body density of women. Med Sci Sports Exerc, 12(3), 175-181. https://doi.org/10.1249/00005768-198023000-00009

Kelly, T. L., Wilson, K. E., & Heymsfield, S. B. (2009). Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One, 4(9), e7038. https://doi.org/10.1371/journal.pone.0007038

Labanca, L., Laudani, L., Menotti, F., Rocchi, J., Mariani, P. P., Giombini, A., . . . Macaluso, A. (2016). Asymmetrical Lower Extremity Loading Early After Anterior Cruciate Ligament Reconstruction Is a Significant Predictor of Asymmetrical Loading at the Time of Return to Sport. Am J Phys Med Rehabil, 95(4), 248-255. https://doi.org/10.1097/phm.0000000000000369

Macaluso, A., & De Vito, G. (2004). Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol, 91(4), 450-472. https://doi.org/10.1007/s00421-003-0991-3

Macaluso, A., Young, A., Gibb, K. S., Rowe, D. A., & De Vito, G. (2003). Cycling as a novel approach to resistance training increases muscle strength, power, and selected functional abilities in healthy older women. J Appl Physiol (1985), 95(6), 2544-2553. https://doi.org/10.1152/japplphysiol.00416.2003

Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W., & Hill, C. L. (2011). Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC Res Notes, 4, 127. https://doi.org/10.1186/1756-0500-4-127

Mathiowetz, V., Kashman, N., Volland, G., Weber, K., Dowe, M., & Rogers, S. (1985). Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil, 66(2), 69-74.

Menotti, F., Bazzucchi, I., Felici, F., Damiani, A., Gori, M. C., & Macaluso, A. (2012). Neuromuscular function after muscle fatigue in Charcot-Marie-Tooth type 1A patients. Muscle Nerve, 46(3), 434-439. https://doi.org/10.1002/mus.23366

Murawska-Cialowicz, E., Wojna, J., & Zuwala-Jagiello, J. (2015). Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J Physiol Pharmacol, 66(6), 811-821.

Queiroga, M. R., Cavazzotto, T. G., Katayama, K. Y., Portela, B. S., Tartaruga, M. P., & Ferreira, S. A. (2013). Validity of the RAST for evaluating anaerobic power performance as compared to Wingate test in cycling athletes. Revista de Educação Física, 19(4), 696-702. https://doi.org/10.1590/s1980-65742013000400005

Rodriguez, N. R., DiMarco, N. M., & Langley, S. (2009). Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Am Diet Assoc, 109(3), 509-527. https://doi.org/10.1016/j.jada.2009.01.005

Sirico, F., Fernando, F., Di Paolo, F., Adami, P. E., Signorello, M. G., Sannino, G., . . . Biffi, A. (2019). Exercise stress test in apparently healthy individuals - where to place the finish line? The Ferrari corporate wellness programme experience. Eur J Prev Cardiol, 26(7), 731-738. https://doi.org/10.1177/2047487318825174

Stumbo, T. A., Merriam, S., Nies, K., Smith, A., Spurgeon, D., & Weir, J. P. (2001). The effect of hand-grip stabilization on isokinetic torque at the knee. J Strength Cond Res, 15(3), 372-377.

Thompson, W. R. (2013). Now trending: worldwide survey of fitness trends for 2014. ACSMʼs Health & Fitness Journal, 17(6), 10-20. https://doi.org/10.1249/fit.0000000000000252

Thompson, W. R. (2018). Worldwide Survey of Fitness Trends for 2019. ACSMʼs Health & Fitness Journal, 22(6), 10-17. https://doi.org/10.1249/fit.0000000000000438

Tibana, R., de Sousa, N., Prestes, J., & Voltarelli, F. (2018). Lactate, Heart Rate and Rating of Perceived Exertion Responses to Shorter and Longer Duration CrossFit® Training Sessions. J Funct Morphol Kinesiol, 3(4), 60. https://doi.org/10.3390/jfmk3040060

Wasserman, K., Beaver, W. L., & Whipp, B. J. (1986). Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc, 18(3), 344-352. https://doi.org/10.1249/00005768-198606000-00017

Zacharogiannis, E., Paradisis, G., & Tziortzis, S. (2004). An evaluation of tests of anaerobic power and capacity. Med Sci Sports Exerc, 36(5), S116. https://doi.org/10.1249/00005768-200405001-00549

Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res, 23(6), 1820-1827. https://doi.org/10.1519/jsc.0b013e3181b3df32

Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res, 23(9), 2598-2604. https://doi.org/10.1519/jsc.0b013e3181b1b21b

Statistics

Statistics RUA

Published

2021-07-01

How to Cite

Adami, P. E., Rocchi, J. E., Melke, N., & Macaluso, A. (2021). Physiological profile of high intensity functional training athletes. Journal of Human Sport and Exercise, 16(3), 675–688. https://doi.org/10.14198/jhse.2021.163.16

Issue

Section

Performance Analysis of Sport

Most read articles by the same author(s)