Journal of Human Sport and Exercise

Biomechanical analysis of the late approach and the take off in the indoor women’s long jump

Vassilios Panoutsakopoulos, Apostolos S. Theodorou, Efstratios Fragkoulis, Mariana C. Kotzamanidou



Aim of the study was to provide evidence concerning the biomechanical parameters of contemporary Women’s long jump in indoor competition. The final six steps and the take-off of 11 jumps (6.88 ± 0.23 m) were recorded (panning camera; sampling frequency: 300 fps) in an indoor competition. The examined parameters were a) the step parameters, the percentage distribution of adjustment (ADJ%) and the inter-limb symmetry angle (θSYM) in the late approach, b) the joint angles and the take-off parameters. Pearson’s correlation analysis revealed that approach velocity (9.8 ± 0.3 m/s) was significantly correlated (r = .86, p = .001) with effective distance (6.96 ± 0.23 m). The largest ADJ% (57.6 %) was executed at the penultimate step which was 12.2 ± 2.8 % larger than the last step. An inter-limb difference was revealed for step frequency (t10 = 6.965, p < .001) due to the large asymmetry observed (θSYM = 5.54 deg). The knee angle of the push-off leg at take-off was 171.2 ± 4.7deg. Resultant velocity (8.3 ± 0.4 m/s), height (1.15 ± 0.05 m) and angle (20.7 ± 2.3 deg) of take-off significantly predicted effective distance (F3,7 = 12.671, p = .003, R2 = .844). The present findings are in reasonable agreement with previous research. Future studies should examine the possible reliance and asymmetry for the step parameters in the final approach.


Track and Field; Asymmetry; Sports performance; Female; Speed; Take-off parameters


Akl, A. R. (2014). Biomechanical study to assess the variations between male and female in long jump. Sport Sci Pract Asp, 11(1), 33-36.

Arampatzis, A., & Brüggemann, G.-P. (1999). Mechanical energetic processes in long jump and their effect on jumping performance. New Stud Athl, 14(4), 37-44.

Brüggemann, G. P., & Conrad, T. (1986). Long jump. In: Susanka, P., Brüggemann, G. P., Tsarouhas, E. (Eds.), Biomechanical Research in Athletics - 1st World Junior Championships, Athens 1986 (pp. 89-119, in Greek). Athens: S.E.G.A.S. - E.K.A.E.

Bruggemann, P., & Nixdorf, E. (1985). Sex-specific differences in the technical and motor apparatus of the jumps. In: Women's Track and Field Athletics (pp. 219-230). Darmstadt, Germany: Deutscher Leichtathletik-Verband.

Campos, J., Gámez, J., Encarnación, A., Gutiérrez-Dávila, M., & Rojas, J. (2013a). Three dimensional kinematic analysis of the long jump at the 2008 IAAF World Indoor Championships in Athletics. New Stud Athl, 28(3/4), 115-131.

Campos, J., Gámez, J., Encarnación, A., Gutiérrez-Dávila, M., Rojas, J., & Wallace, E. S. (2013b). Three-dimensional kinematics during the take-off phase in competitive long jumping. Int J Sports Sci Coaching, 8(2), 395-406.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: Lawrence Erlbaum Associates Publishers.

Dempster, W. T. (1955). Space requirements of the seated operator. WADCTR (55-59). Dayton, Ohio, USA: Wright Patterson Air Force Base.

Exell, T., Theodorou, A., & Panoutsakopoulos, V. (2016). Step characteristics during long jump approach: Reliance and asymmetry considerations. In: Ae, M., Enomoto, Y., Fujii, N., Takagi, H. (Editors), Proceedings of the XXXIV International Symposium on Biomechanics in Sports (pp. 581-584). Tsukuba, Japan: International Society of Biomechanics in Sports.

Gervais, P., Bedingfield, E. W., Wronko, C., Kollias, I., Marchiori, G., Kuntz, J., Way, N., & Kuiper, D. (1989). Kinematic measurement from panned cinematography. Can J Sports Sci, 14(2), 107-111.

Graham-Smith, P., & Lees, A. (2005). A three-dimensional kinematic analysis of the long jump take-off. J Sports Sci, 23(9), 891-903.

Hay, J. G. (1986). The biomechanics of the long jump. Exer Sport Sci Rev, 14(1), 401-446.

Hay, J. G. (1988). Approach strategies in the long jump. Int J Sport Biomech, 4(2), 114-129.

Hay, J. G. (1993). Citius, altius, longius (faster, higher, longer): the biomechanics of jumping for distance. J Biomech, 26(Suppl. 1), 7-21.

Hay J. G., & Miller, J. A. (1985). Techniques used in the transition from approach to takeoff in the long jump. Int J Sport Biomech, 1(2), 174-184.

Hay, J. G., & Nohara, H. (1990). Techniques used by elite long jumpers in preparation for takeoff. J Biomech, 23(3), 229-239.

Herzog, W. (1986). Maintenance of body orientation in the flight phase of long jumping. Med Sci Sports Exerc, 18(2), 231-241.

Hildebrandt, A., & Cañal-Bruland, R. (2020). Is gait-based visual regulation identical to gaze-based visual regulation in inexperienced athletes' long jump run-ups? Hum Mov Sci, 73, 102681.

Kobayashi, Y., Kubo, J., Matsuo, A., Matsubayashi, T., Kobayashi, K., & Ishii, N. (2010). Bilateral asymmetry in joint torque during squat exercise performed by long jumpers. J Strength Cond Res, 24(10), 2826-2830.

Lees, A., Derby, D., & Fowler, N. (1992). Sex differences in the jump touchdown and take-off characteristics of the long jump. J Sports Sci, 10(6), 588-589.

Lees, A., Fowler, N., & Derby, D. (1993). A biomechanical analysis of the last stride, touch-down and take-off characteristics of the women's long jump. J Sports Sci, 11(4), 303-314.

Letzelter, S. (2011). The importance of horizontal and vertical take-off velocity for elite female long jumpers. New Stud Athl, 26(3/4), 73-84.

Linthorne, N. P. (2008). Biomechanics of the long jump. In: Y. Hong & R. Bartlett (Eds.), Routledge handbook of biomechanics and human movement science (pp. 340-353). London, UK: Routledge.

Linthorne, N. P., Baker, C., Douglas, M. M., Hill, G. A., & Webster, R. G. (2011). Take-off forces and impulses in the long jump. Port J Sport Sci, 11(Suppl. 3), 33-36.

Luhtanen, P., & Komi, P. V. (1979). Mechanical power and segmental contribution to force impulses in long jump take-off. Eur J Appl Physiol Occup Physiol, 41(4), 267-274.

Makaruk, H., Starzak, M., & Sadowski, J. (2015). Does step length adjustment determine take-off accuracy and approach run velocity in long and triple jumps? Hum Mov, 16(3), 124-129.

Mendoza, L., & Nixdorf, E. (2011). Biomechanical analysis of the horizontal jumping events at the 2009 IAAF World Championships in Athletics. New Stud Athl, 26(3/4), 25-60.

Miller, A. E., MacDougall, J. D., Tarnopolsky, M. A., & Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol, 66(3), 254-262.

Murakami, Y., & Takahashi, K. (2016). Research on gender differences of preparative motion for takeoff in the long jump. In: M. Ae, Y. Enomoto, N. Fujii, & H. Takagi (Eds.), Proceedings of the 34th International Conference of Biomechanics in Sports (pp. 807-810). Tsukuba, Japan: International Society of Biomechanics in Sports.

Muraki, Y., Ae, M., Koyama, H., & Yokozawa, T. (2008). Joint torque and power of the takeoff leg in the long jump. Int J Sport Health Sci, 6, 21-32.

Nemtsev, O., Nemtseva, N., Bguashev, A., Elipkhanov, S., & Grekalova, I. (2016). Gender differences in takeoff techniques of non-elite Russian long jumpers. J Hum Sport Exer, 11(4), 444-454.

Nemtsev, O. B., Nemtseva, N. A., Sukhanov, S. M., Lytkin, A. V., & Parfenova, S. O. (2015). Technical features of take-off of female long jumpers of different skill levels. Teoriya i Praktika Fizicheskoy Kultury, 1, 36-38.

Nemtsev, O., Pevneva, M., Polyanskiy, A., Dukalskaya, A., & Doludenko, E. (2018). Qualification differences in interrelationships of takeoff variables of male long jumpers. J Phys Ed Sport, 18(Suppl. 1), 485-489.

Panoutsakopoulos, V., & Kollias, I. (2007). Biomechanical analysis of sub-elite performers in the women's long jump. New Stud Athl, 22(4), 19-28.

Panoutsakopoulos, V., & Kollias, Ι. A. (2009). Biomechanical analysis of the last strides, the touchdown and the takeoff of top Greek male and female long jumpers. Hellenic J Phys Ed Sport Sci, 29(2), 200-218.

Panoutsakopoulos, V., Papaiakovou, G. I., Katsikas, F. S., & Kollias, I. A. (2010). 3D Biomechanical analysis of the preparation of the long jump take-off. New Stud Athl, 25(1), 55-68.

Panoutsakopoulos, V., Tampakis, K., Papaiakovou, G., & Kollias, I. A. (2007). Factor analysis of biomechanical parameters which define performance in the long jump. Exer Soc, 46, 121-124.

Panoutsakopoulos, V., Theodorou, A. S., Kotzamanidou, M. C., & Kollias, I. A. (2020). Biomechanical analysis of the 2017 European indoor champion in the women's long jump: case report. Exer Qual Life, 12(1), 5-13.

Panoutsakopoulos, V., Theodorou, A. S., & Papaiakovou, G. I. (2017). Gender differences in the preparation for take-off in elite long jumpers. Acta Gymnica, 47(2), 84-91.

Pueo, B. (2016). High speed cameras for motion analysis in sports science. J Hum Sport Exer, 11(1), 53-73.

Ramos, C. D., Ramey, M., Wilcox, R. R., & McNitt-Gray, J. L. (2019). Generation of linear impulse during the takeoff of the long jump. J Appl Biomech, 35(1), 52-60.

Sado, N., Yoshioka S., & Fukashiro, S. (2018). Effect of segmental rotations on vertical and horizontal energies during take-off of a long jump. ISBS Proceedings Archive, 36(1), 806-810.

Shimizu, Y., Ae, M., & Koyama, H. (2011). A biomechanical study of the takeoff preparation and the takeoff motions in elite male long jumpers. Port J Sport Sci, 11(Suppl. 2), 381-383.

Theodorou, A. S., Ioakimidou, E., Kouris, P., Panoutsakopoulos, V., & Smpokos, E. (2013). Colour contrast and regulation of the long jump approach run. J Hum Sport Exer, 8(Proc. 3), S681-S687.

Theodorou, A. S., Panoutsakopoulos, V., Exell, T. A., Argeitaki, P., Paradisis, G. P., & Smirniotou, A. (2017). Step characteristic interaction and asymmetry during the approach phase in long jump. J Sports Sci, 35(4), 346-354.

Tidow, G. (1989). Model technique analysis sheet for the horizontal jumps. Part I-The long jump. New Stud Athl, 3(3), 47-62.

Tucker, C. B., Bissas, A. & Merlino, S. (2019). Biomechanical Report for the IAAF World Indoor Championships 2018: Long Jump Women. Birmingham, UK: International Association of Athletics Federations.


Copyright (c) 2021 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.