The neuropsychological effects of motor development mediated by technologies in disabled subjects

Authors

  • Federica Doronzo University of Foggia, Italy
  • Piergiorgio Guarini University of Foggia, Italy

DOI:

https://doi.org/10.14198/jhse.2021.16.Proc3.12

Keywords:

Motor development, Disability, Emotion, Cognition, Motivation, Technology

Abstract

Background: the sector of motor development mediated by technologies in disabled subjects is growing. It is becoming popular as subject of interdisciplinary studies in engineering, neuroscientific, psychological and pedagogical fields. Nevertheless, only in the last few years scientific studies in motor development mediated by technologies in disabled subjects are analysing and studying the neuropsychological effects of such practices as well. Objective: the purpose of this work is the analysis of the scientific literature about the effects of the employment of technologies in motor abilitation/rehabilitation in disabled subjects. It will identify and track the research paths that scientific studies are following. The identification will be based on the scientific production of the last decade. The target includes adults and children. Material and methods: this work started researching combined words among the concepts of motor development, technology, disability and effects in electronic databases. In order to be considered valuable, the studies must have the purpose to measure the motivational, emotional and/or cognitive effects associated with motor development. Scientific papers which don’t focus mainly on psychological implication were excluded from this review. Results: this work observes that international scientific literature strongly focused on 4 macro-categories, related to the technology used: 1) assistive robots, 2) brain-computer interface (BCI); 3) augmented or virtual reality; (3) technology-aided support tools and interactive apps. These tools produce a recovery or improvement in different fields: motor, social, cognitive, emotional and motivational. Conclusions: the research about motor development mediated by technologies in disabled subjects has a wide reach in the recovery of neuromotor deficit and in the acquisition or improvement of neuropsychological competences. The effects can generate relapses not only in the field of neuro-motricity but also in educational and mental health field.

Downloads

Download data is not yet available.

References

Buitrago, J. A., Bolaños, A. M., & Caicedo Bravo, E. (2020). A motor learning therapeutic intervention for a child with cerebral palsy through a social assistive robot. Disability and rehabilitation. Assistive technology, 15(3), 357-362. https://doi.org/10.1080/17483107.2019.1578999

Burridge, JH, Lee, ACW, Turk, R., Stokes, M., Whitall, J., Vaidyanathan, R., ... e Yardley, L. (2017). Telehealth, Wearable Sensors, and the Internet: Will They Improve Stroke Outcomes Through Increased Intensity of Therapy, Motivation, and Adherence to Rehabilitation Programs? Journal of Neurologic Physical Therapy, 41, S32-S38. https://doi.org/10.1097/NPT.0000000000000183

Cappagli, G., Finocchietti, S., Cocchi, E., Giammari, G., Zumiani, R., Cuppone, A. V., Baud-Bovy, G., & Gori, M. (2019). Audio motor training improves mobility and spatial cognition in visually impaired children. Scientific reports, 9(1), 3303. https://doi.org/10.1038/s41598-019-39981-x

Cook, A. M., Adams, K., Encarnação, P., & Alvarez, L. (2012). The role of assisted manipulation in cognitive development. Developmental Neurorehabilitation, 15(2), 136-148. https://doi.org/10.3109/17518423.2011.635609

Cook, A., Encarnaço, P., & Adams, K. (2010). Robots: Assistive technologies for play, learning and cognitive development. Technology and Disability, 22(3), 127-145. https://doi.org/10.3233/TAD-2010-0297

Coutinho, F., Bosisio, M. E., Brown, E., Rishikof, S., Skaf, E., Zhang, X., Perlman, C., Kelly, S., Freedin, E., & Dahan-Oliel, N. (2017). Effectiveness of iPad apps on visual-motor skills among children with special needs between 4y0m-7y11m. Disability and rehabilitation. Assistive technology, 12(4), 402-410. https://doi.org/10.1080/17483107.2016.1185648

Della Gatta F. and Salerno G., (2018). La mente dal corpo: l'embodiment tra fenomenologia e neuroscienze. Ineditedizioni.

Felger, J., Treadway, M. (2017). Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacol 42, 216–241. https://doi.org/10.1038/npp.2016.143

Florio TM, Scarnati E, Rosa I, Di Censo D, Ranieri B, Cimini A, Galante A, Alecci M. (2018) The Basal Ganglia: More than just a switching device. CNS Neurosci Ther. https://doi.org/10.1111/cns.12987

Jolliffe, D., & Farrington, D. P. (2007). A rapid evidence assessment of the impact of mentoring on re-offending: A summary. London: Home Office.

Kokkoni, E., Mavroudi, E., Zehfroosh, A. et al. (2020). GEARing smart environments for pediatric motor rehabilitation. J NeuroEngineering Rehabil 17, 16. https://doi.org/10.1186/s12984-020-0647-0

Korup, V., Nielsen, C. M., Wienecke, J., Ritz, C., Krustrup, P., & Lundbye-Jensen, J. (2016). Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children. PloS one.

Lancioni, G. E., Singh, N. N., O’Reilly, M. F., Sigafoos, J., Campodonico, F., & Alberti, G. (2017). Use of a Smartphone for Leisure and Communication by People with Blindness and Motor Disabilities. Journal of Visual Impairment & Blindness, 111(2), 181–186. https://doi.org/10.1177/0145482X1711100211

Lancioni, G. E., Olivetti Belardinelli, M., Singh, N. N., O'Reilly, M. F., Sigafoos, J., & Alberti, G. (2019). Recent Technology-Aided Programs to Support Adaptive Responses, Functional Activities, and Leisure and Communication in People With Significant Disabilities. Frontiers in neurology, 10, 643. https://doi.org/10.3389/fneur.2019.00643

Limone, P. & Toto G. (2018). The psychological constructs and dimensions applied to sports performance: a change of theoretical paradigms. Journal of Physical Education and Sport, 18, 2034.

Limone, P. (2021, January). Towards a hybrid ecosystem of blended learning within university contexts. In CEUR Workshop Proceedings (Vol. 2817).

McGibbon C, Sexton A, Gryfe P, Dutta T, Jayaraman A, Deems-Dluhy S, Novak A, Fabara E, Adans-Dester C, Bonato P. Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disabil Rehabil Assist Technol. 2021 Jan 27:1-8. https://doi.org/10.1080/17483107.2021.1874064

Mikkelsen, K., Stojanovska, L., Polenakovic, M., Bosevski, M., & Apostolopoulos, V. (2017). Exercise and mental health. Maturitas, 106, 48-56. https://doi.org/10.1016/j.maturitas.2017.09.003

Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F. (2015). Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory. NeuroImage. https://doi.org/10.1016/j.neuroimage.2014.09.046

Non-ambulatory people with intellectual disabilities practice functional arm, leg or head responses via a smartphone-based program. J Dev Phys Disabi. (2019) 631:251-65. https://doi.org/10.1007/s10882-018-9636-7

Pulay M. Á. (2015). Eye-tracking and EMG supported 3D Virtual Reality - an integrated tool for perceptual and motor development of children with severe physical disabilities: a research concept. Studies in health technology and informatics, 217, 840-846.

Rogers, J. M., Duckworth, J., Middleton, S., Steenbergen, B., & Wilson, P. H. (2019). Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. Journal of neuroengineering and rehabilitation. https://doi.org/10.1186/s12984-019-0531-y

Role of Dopamine. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology.

Rosenfeld, J. V., & Wong, Y. T. (2017). Neurobionics and the brain-computer interface: current applications and future horizons. The Medical journal of Australia, 206(8), 363-368. https://doi.org/10.5694/mja16.01011

Schmahmann JD. (2019) The cerebellum and cognition. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.07.005

Taherian, S., Selitskiy, D., Pau, J., Davies, T. C., & Owens, R. G. (2016). Training to use a commercial brain-computer interface as access technology: a case study. Disability and rehabilitation. Assistive technology, 11(4), 345-350.

Toto, G. A., & Limone, P. (2020, September). New Perspectives for Using the Model of the Use and Acceptance of Technology in Smart Teaching. In International Workshop on Higher Education Learning Methodologies and Technologies Online (pp. 115-125). Springer, Cham. https://doi.org/10.1007/978-3-030-67435-9_9

Toto, G.A., & Limone, P. (2021) From Resistance to Digital Technologies in the Context of the Reaction to Distance Learning in the School Context during COVID-19. Educ. Sci., 11, 163. https://doi.org/10.3390/educsci11040163

Varker, Tracey & Forbes, David & Dell, Lisa & Weston, Adele & Merlin, Tracy & Hodson, Stephanie & O'Donnell, Meaghan. (2015). Rapid evidence assessment: Increasing the transparency of an emerging methodology. Journal of Evaluation in Clinical Practice. https://doi.org/10.1111/jep.12405

Verrusio, W., Renzi, A., Cecchetti, F., Gaj, F., Coi, M., Ripani, M., & Cacciafesta, M. (2018). The Effect of a Physical Training with the Use of an Exoskeleton on Depression Levels in Institutionalized Elderly Patients: A Pilot Study. The journal of nutrition, health & aging, 22(8), 934–937. https://doi.org/10.1007/s12603-018-1044-2

Wei, W. (2018). Virtual reality enhanced robotic systems for disability rehabilitation. Virtual and augmented reality: Concepts, methodologies, tools, and applications (pp. 1267-1287). https://doi.org/10.4018/978-1-5225-5469-1.ch061

Yamauchi, Y., Aoki, S., Koike, J., Hanzawa, N., & Hashimoto, K. (2019). Motor and cognitive development of children with Down syndrome: The effect of acquisition of walking skills on their cognitive and language abilities. Brain & development. https://doi.org/10.1016/j.braindev.2018.11.008

Yazıcı, M., Livanelioğlu, A., Gücüyener, K., Tekin, L., Sümer, E., & Yakut, Y. (2019). Effects of robotic rehabilitation on walking and balance in pediatric patients with hemiparetic cerebral palsy. https://doi.org/10.1016/j.gaitpost.2019.03.017

Statistics

Statistics RUA

Published

2021-09-01

How to Cite

Doronzo, F., & Guarini, P. (2021). The neuropsychological effects of motor development mediated by technologies in disabled subjects. Journal of Human Sport and Exercise, 16(3proc), S963-S972. https://doi.org/10.14198/jhse.2021.16.Proc3.12