Determining the optimal blood flow restriction protocol for maximising muscle hypertrophy and strength, pressure and cuff width: A mini-review

Authors

DOI:

https://doi.org/10.14198/jhse.2021.164.02

Keywords:

Blood flow restriction, Cuff width, Hypertrophy, Occlusion pressure

Abstract

Low load resistance training accompanied by blood flow restriction (BFR) has been established as a training modality to induce hypertrophy and strength adaptations. Throughout the BFR-literature, several protocols have emerged with a vast difference among manipulations regarding limb occlusion pressure and the use of different cuff sizes. The aim of this review is to summarise the research underpinning the stimulus regarding alterations in occlusion pressure and the use of different cuff widths, thus investigate whether an optimal protocol is evident. While the focal point of BFR-literature supports the efficiency of several BFR-protocols, no uniform BFR-protocol are located in the literature to maximise muscle hypertrophy and strength. However, an optimal limb occlusion pressure is crucial to achieve venous blood pooling, thus induce a significant stimulus to the muscle, and should be individualised and likely applied relative to the maximum arterial occlusion pressure. Quantification of the optimal pressure range is currently a disputed topic, with no conclusive evidence leading to the most efficient range of applied pressure. Regarding cuff widths, applying an absolute or relative pressure, and their implications regarding the hemodynamics of blood flow should be considered by the researchers. The author would highlight that future BFR studies should be conducted to shed light on the determinants underpinning the protocol to optimise muscle hypertrophy and strength through BFR resistance training, which could have an important ramification through its increasing use in clinical settings and athletic development.

Downloads

Download data is not yet available.

References

Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., . . . Ishii, N. (2010). Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2MAX in Young Men. J Sports Sci Med, 9(3), 452-458.

Behringer, M., Behlau, D., Montag, J. C. K., McCourt, M. L., & Mester, J. (2017). Low-Intensity Sprint Training With Blood Flow Restriction Improves 100-m Dash. J Strength Cond Res, 31(9), 2462-2472. https://doi.org/10.1519/jsc.0000000000001746

Clark, B. C., Manini, T. M., Hoffman, R. L., Williams, P. S., Guiler, M. K., Knutson, M. J., . . . Kushnick, M. R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports, 21(5), 653-662. https://doi.org/10.1111/j.1600-0838.2010.01100.x

Cook, S. B., LaRoche, D. P., Villa, M. R., Barile, H., & Manini, T. M. (2017). Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp Gerontol, 99, 138-145. https://doi.org/10.1016/j.exger.2017.10.004

Counts, B. R., Dankel, S. J., Barnett, B. E., Kim, D., Mouser, J. G., Allen, K. M., . . . Loenneke, J. P. (2016). Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve, 53(3), 438-445. https://doi.org/10.1002/mus.24756

Crenshaw, A. G., Hargens, A. R., Gershuni, D. H., & Rydevik, B. (1988). Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand, 59(4), 447-451. https://doi.org/10.3109/17453678809149401

Dankel, S. J., Buckner, S. L., Counts, B. R., Jessee, M. B., Mouser, J. G., Mattocks, K. T., . . . Loenneke, J. P. (2017). The acute muscular response to two distinct blood flow restriction protocols. Physiol Int, 104(1), 64-76. https://doi.org/10.1556/2060.104.2017.1.1

Dankel, S. J., Jessee, M. B., Buckner, S. L., Mouser, J. G., Mattocks, K. T., & Loenneke, J. P. (2017). Are higher blood flow restriction pressures more beneficial when lower loads are used? Physiol Int, 104(3), 247-257. https://doi.org/10.1556/2060.104.2017.3.2

de Oliveira, M. F., Caputo, F., Corvino, R. B., & Denadai, B. S. (2016). Short-term lowintensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports, 26(9), 1017-1025. https://doi.org/10.1111/sms.12540

Goodpaster, B. H., Park, S. W., Harris, T. B., Kritchevsky, S. B., Nevitt, M., Schwartz, A. V., . . . Newman, A. B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci, 61(10), 1059-1064. https://doi.org/10.1093/gerona/61.10.1059

Graham, B., Breault, M. J., McEwen, J. A., & McGraw, R. W. (1993). Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop Relat Res(286), 257-261. https://doi.org/10.1097/00003086-199301000-00038

Hylden, C., Burns, T., Stinner, D., & Owens, J. (2015). Blood flow restriction rehabilitation for extremity weakness: a case series. J Spec Oper Med, 15(1), 50-56.

Jessee, M. B., Buckner, S. L., Dankel, S. J., Counts, B. R., Abe, T., & Loenneke, J. P. (2016). The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med, 46 (6), 913 - 921. https://doi.org/10.1007/s40279-016-0473-5

Kim, D., Loenneke, J. P., Ye, X., Bemben, D. A., Beck, T. W., Larson, R. D., & Bemben, M. G. (2017). Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve, 56(6), E126-e133. https://doi.org/10.1002/mus.25626

Laurentino, G. C., Loenneke, J. P., Teixeira, E. L., Nakajima, E., Iared, W., & Tricoli, V. (2016). The Effect of Cuff Width on Muscle Adaptations after Blood Flow Restriction Training. Med Sci Sports Exerc, 48(5), 920-925. https://doi.org/10.1249/mss.0000000000000833

Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M., Jr., . . . Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44(3), 406-412. https://doi.org/10.1249/mss.0b013e318233b4bc

Iida, H., Kurano, M., Takano, H., Kubota, N., Morita, T., Meguro, K., . . . Nakajima, T. (2007). Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol, 100(3), 275-285. https://doi.org/10.1007/s00421-007-0430-y

Lixandrao, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceicao, M. S., Damas, F., . . . Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med, 48(2), 361-378. https://doi.org/10.1007/s40279-017-0795-y

Lixandrao, M. E., Ugrinowitsch, C., Laurentino, G., Libardi, C. A., Aihara, A. Y., Cardoso, F. N., . . . Roschel, H. (2015). Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol, 115 (12), 2471 - 2480. https://doi.org/10.1007/s00421-015-3253-2

Loenneke, J. P., Fahs, C. A., Rossow, L. M., Sherk, V. D., Thiebaud, R. S., Abe, T., . . . Bemben, M. G. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol, 112(8), 2903-2912. https://doi.org/10.1007/s00421-011-2266-8

Loenneke, J. P., Fahs, C. A., Thiebaud, R. S., Rossow, L. M., Abe, T., Ye, X., . . . Bemben, M. G. (2012). The acute muscle swelling effects of blood flow restriction. Acta Physiol Hung, 99(4), 400-410. https://doi.org/10.1556/aphysiol.99.2012.4.4

Loenneke, J. P., Thiebaud, R. S., Abe, T., & Bemben, M. G. (2014). Blood flow restriction pressure recommendations: the hormesis hypothesis. Med Hypotheses, 82(5), 623-626. https://doi.org/10.1016/j.mehy.2014.02.023

Martin-Hernandez, J., Marin, P. J., Menendez, H., Ferrero, C., Loenneke, J. P., & Herrero, A. J. (2013). Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports, 23(2), e114-120. https://doi.org/10.1111/sms.12036

Mattocks, K. T., Jessee, M. B., Counts, B. R., Buckner, S. L., Grant Mouser, J., Dankel, S. J., . . . Loenneke, J. P. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol Behav, 171, 181 – 186. https://doi.org/10.1016/j.physbeh.2017.01.015

Mouser, J. G., Dankel, S. J., Mattocks, K. T., Jessee, M. B., Buckner, S. L., Abe, T., & Loenneke, J. P. (2018). Blood flow restriction and cuff width: effect on blood flow in the legs. Clin Physiol Funct Imaging. https://doi.org/10.1111/cpf.12504

Mouser, J. G., Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Counts, B. R., & Loenneke, J. P. (2017). A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol, 117(7), 1493-1499. https://doi.org/10.1007/s00421-017-3644-7

Navalta, James W.; Stone, Whitley J.; and Lyons, Scott (2019) "Ethical Issues Relating to Scientific Discovery in Exercise Science," International Journal of Exercise Science: Vol. 12 : Iss. 1.

Neto, G. R., Sousa, M. S., Costa, P. B., Salles, B. F., Novaes, G. S., & Novaes, J. S. (2015). Hypotensive effects of resistance exercises with blood flow restriction. J Strength Cond Res, 29 (4), 1064 - 1070. https://doi.org/10.1519/jsc.0000000000000734

Paton, C. D., Addis, S. M., & Taylor, L. A. (2017). The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. Eur J Appl Physiol, 117(12), 2579-2585. https://doi.org/10.1007/s00421-017-3745-3

Slysz, J., Stultz, J., & Burr, J. F. (2016). The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Spor t , 19(8) , 669-675. https://doi.org/10.1016/j.jsams.2015.09.005

Vechin, F. C., Libardi, C. A., Conceicao, M. S., Damas, F. R., Lixandrao, M. E., Berton, R. P., . . . Ugrinowitsch, C. (2015). Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res, 29 (4), 1071 - 1076. https://doi.org/10.1519/jsc.0000000000000703

Yow, B. G., Tennent, D. J., Dowd, T. C., Loenneke, J. P., & Owens, J. G. (2018). Blood Flow Restriction Training After Achilles Tendon Rupture. J Foot Ankle Surg. https://doi.org/10.1053/j.jfas.2017.11.008

Statistics

Statistics RUA

Published

2021-11-11

How to Cite

Næss, T. C. (2021). Determining the optimal blood flow restriction protocol for maximising muscle hypertrophy and strength, pressure and cuff width: A mini-review. Journal of Human Sport and Exercise, 16(4), 752–759. https://doi.org/10.14198/jhse.2021.164.02

Issue

Section

Review Paper