Determining the optimal blood flow restriction protocol for maximising muscle hypertrophy and strength, pressure and cuff width: A mini-review




Blood flow restriction, Cuff width, Hypertrophy, Occlusion pressure


Low load resistance training accompanied by blood flow restriction (BFR) has been established as a training modality to induce hypertrophy and strength adaptations. Throughout the BFR-literature, several protocols have emerged with a vast difference among manipulations regarding limb occlusion pressure and the use of different cuff sizes. The aim of this review is to summarise the research underpinning the stimulus regarding alterations in occlusion pressure and the use of different cuff widths, thus investigate whether an optimal protocol is evident. While the focal point of BFR-literature supports the efficiency of several BFR-protocols, no uniform BFR-protocol are located in the literature to maximise muscle hypertrophy and strength. However, an optimal limb occlusion pressure is crucial to achieve venous blood pooling, thus induce a significant stimulus to the muscle, and should be individualised and likely applied relative to the maximum arterial occlusion pressure. Quantification of the optimal pressure range is currently a disputed topic, with no conclusive evidence leading to the most efficient range of applied pressure. Regarding cuff widths, applying an absolute or relative pressure, and their implications regarding the hemodynamics of blood flow should be considered by the researchers. The author would highlight that future BFR studies should be conducted to shed light on the determinants underpinning the protocol to optimise muscle hypertrophy and strength through BFR resistance training, which could have an important ramification through its increasing use in clinical settings and athletic development.


Download data is not yet available.


Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., . . . Ishii, N. (2010). Effects of Low-Intensity Cycle Training with Restricted Leg Blood Flow on Thigh Muscle Volume and VO2MAX in Young Men. J Sports Sci Med, 9(3), 452-458.

Behringer, M., Behlau, D., Montag, J. C. K., McCourt, M. L., & Mester, J. (2017). Low-Intensity Sprint Training With Blood Flow Restriction Improves 100-m Dash. J Strength Cond Res, 31(9), 2462-2472.

Clark, B. C., Manini, T. M., Hoffman, R. L., Williams, P. S., Guiler, M. K., Knutson, M. J., . . . Kushnick, M. R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports, 21(5), 653-662.

Cook, S. B., LaRoche, D. P., Villa, M. R., Barile, H., & Manini, T. M. (2017). Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp Gerontol, 99, 138-145.

Counts, B. R., Dankel, S. J., Barnett, B. E., Kim, D., Mouser, J. G., Allen, K. M., . . . Loenneke, J. P. (2016). Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve, 53(3), 438-445.

Crenshaw, A. G., Hargens, A. R., Gershuni, D. H., & Rydevik, B. (1988). Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand, 59(4), 447-451.

Dankel, S. J., Buckner, S. L., Counts, B. R., Jessee, M. B., Mouser, J. G., Mattocks, K. T., . . . Loenneke, J. P. (2017). The acute muscular response to two distinct blood flow restriction protocols. Physiol Int, 104(1), 64-76.

Dankel, S. J., Jessee, M. B., Buckner, S. L., Mouser, J. G., Mattocks, K. T., & Loenneke, J. P. (2017). Are higher blood flow restriction pressures more beneficial when lower loads are used? Physiol Int, 104(3), 247-257.

de Oliveira, M. F., Caputo, F., Corvino, R. B., & Denadai, B. S. (2016). Short-term lowintensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports, 26(9), 1017-1025.

Goodpaster, B. H., Park, S. W., Harris, T. B., Kritchevsky, S. B., Nevitt, M., Schwartz, A. V., . . . Newman, A. B. (2006). The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci, 61(10), 1059-1064.

Graham, B., Breault, M. J., McEwen, J. A., & McGraw, R. W. (1993). Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop Relat Res(286), 257-261.

Hylden, C., Burns, T., Stinner, D., & Owens, J. (2015). Blood flow restriction rehabilitation for extremity weakness: a case series. J Spec Oper Med, 15(1), 50-56.

Jessee, M. B., Buckner, S. L., Dankel, S. J., Counts, B. R., Abe, T., & Loenneke, J. P. (2016). The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med, 46 (6), 913 - 921.

Kim, D., Loenneke, J. P., Ye, X., Bemben, D. A., Beck, T. W., Larson, R. D., & Bemben, M. G. (2017). Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve, 56(6), E126-e133.

Laurentino, G. C., Loenneke, J. P., Teixeira, E. L., Nakajima, E., Iared, W., & Tricoli, V. (2016). The Effect of Cuff Width on Muscle Adaptations after Blood Flow Restriction Training. Med Sci Sports Exerc, 48(5), 920-925.

Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M., Jr., . . . Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44(3), 406-412.

Iida, H., Kurano, M., Takano, H., Kubota, N., Morita, T., Meguro, K., . . . Nakajima, T. (2007). Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol, 100(3), 275-285.

Lixandrao, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceicao, M. S., Damas, F., . . . Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med, 48(2), 361-378.

Lixandrao, M. E., Ugrinowitsch, C., Laurentino, G., Libardi, C. A., Aihara, A. Y., Cardoso, F. N., . . . Roschel, H. (2015). Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol, 115 (12), 2471 - 2480.

Loenneke, J. P., Fahs, C. A., Rossow, L. M., Sherk, V. D., Thiebaud, R. S., Abe, T., . . . Bemben, M. G. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol, 112(8), 2903-2912.

Loenneke, J. P., Fahs, C. A., Thiebaud, R. S., Rossow, L. M., Abe, T., Ye, X., . . . Bemben, M. G. (2012). The acute muscle swelling effects of blood flow restriction. Acta Physiol Hung, 99(4), 400-410.

Loenneke, J. P., Thiebaud, R. S., Abe, T., & Bemben, M. G. (2014). Blood flow restriction pressure recommendations: the hormesis hypothesis. Med Hypotheses, 82(5), 623-626.

Martin-Hernandez, J., Marin, P. J., Menendez, H., Ferrero, C., Loenneke, J. P., & Herrero, A. J. (2013). Muscular adaptations after two different volumes of blood flow-restricted training. Scand J Med Sci Sports, 23(2), e114-120.

Mattocks, K. T., Jessee, M. B., Counts, B. R., Buckner, S. L., Grant Mouser, J., Dankel, S. J., . . . Loenneke, J. P. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol Behav, 171, 181 – 186.

Mouser, J. G., Dankel, S. J., Mattocks, K. T., Jessee, M. B., Buckner, S. L., Abe, T., & Loenneke, J. P. (2018). Blood flow restriction and cuff width: effect on blood flow in the legs. Clin Physiol Funct Imaging.

Mouser, J. G., Dankel, S. J., Jessee, M. B., Mattocks, K. T., Buckner, S. L., Counts, B. R., & Loenneke, J. P. (2017). A tale of three cuffs: the hemodynamics of blood flow restriction. Eur J Appl Physiol, 117(7), 1493-1499.

Navalta, James W.; Stone, Whitley J.; and Lyons, Scott (2019) "Ethical Issues Relating to Scientific Discovery in Exercise Science," International Journal of Exercise Science: Vol. 12 : Iss. 1.

Neto, G. R., Sousa, M. S., Costa, P. B., Salles, B. F., Novaes, G. S., & Novaes, J. S. (2015). Hypotensive effects of resistance exercises with blood flow restriction. J Strength Cond Res, 29 (4), 1064 - 1070.

Paton, C. D., Addis, S. M., & Taylor, L. A. (2017). The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. Eur J Appl Physiol, 117(12), 2579-2585.

Slysz, J., Stultz, J., & Burr, J. F. (2016). The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Spor t , 19(8) , 669-675.

Vechin, F. C., Libardi, C. A., Conceicao, M. S., Damas, F. R., Lixandrao, M. E., Berton, R. P., . . . Ugrinowitsch, C. (2015). Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res, 29 (4), 1071 - 1076.

Yow, B. G., Tennent, D. J., Dowd, T. C., Loenneke, J. P., & Owens, J. G. (2018). Blood Flow Restriction Training After Achilles Tendon Rupture. J Foot Ankle Surg.


Statistics RUA



How to Cite

Næss, T. C. (2021). Determining the optimal blood flow restriction protocol for maximising muscle hypertrophy and strength, pressure and cuff width: A mini-review. Journal of Human Sport and Exercise, 16(4), 752–759.



Review Paper