Journal of Human Sport and Exercise

Global DNA methylation and physical fitness of elderly athletes with lifelong endurance activity

Leonard Lendvorsky, Bozena Smolkova, Verona Buocikova, Lenka Wachsmannova, Viktor Bielik


Background: Level of Global DNA methylation is associated with many diseases and the influence of physical activity is being investigated by several research groups. The aim of our study was to assess the effect of lifetime endurance physical activity on global DNA methylation, physical fitness and body composition. Methods: A total of 31 elderly males were involved in the study, divided into two groups based on differences in physical activity. The first group consisted of 18 volunteers with lifetime endurance activity (mean age: 65.1 ± 3.3 yr.; height: 174.8 ± 4.9; weight: 81.5 ± 6,1 kg; BMI: 24.2 ± 1.1). The control group consisted of thirteen elderly individuals with a sedentary lifestyle (mean age: 64.8 ± 3.1 yr.; height: 176.5 ± 5.5; weight: 87.9 ± 10.1 kg; BMI: 27.8 ± 2.9). Quantification of global DNA methylation was performed in DNA isolated from peripheral blood mononucleated cells by LINE-1 pyrosequencing. Results: Elderly individuals with lifetime endurance activity had a better level of physical fitness VO2max on average 30 % (35.7 ± 10.6 vs. 31.9 ± 7,7, p <.01) and lower mean body fat content (17.46 ± 2.52 vs. 27.8 ± 2.9 %, p < .01). Global DNA methylation did not differ between studied groups (81.1 ± 2.1 vs. 80.5 ± 1.6 %). Conclusion: Better level of physical fitness does not influence the level of the global DNA methylation in peripheral blood mononuclear cells significantly. For future research we recommended to observe DNA methylation changes in specific tissues (e.g. skeletal muscle fibres).


Global DNA methylation; Physical fitness; Ageing; Endurance


Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853-859.

Arnett, S. W., Laity, J. H., Agrawal, S. K., & Cress, M. E. (2008). Aerobic reserve and physical functional performance in older adults. Age Ageing, 37(4), 384-389.

Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med, 79(2), 137-158.

Ballard-Barbash, R., Friedenreich, C. M., Courneya, K. S., Siddiqi, S. M., McTiernan, A., & Alfano, C. M. (2012). Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review. Jnci-Journal of the National Cancer Institute, 104(11), 815-840.

Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381-395.

Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H. M., . . . Feinberg, A. P. (2008). Intra-individual change over time in DNA methylation with familial clustering. Jama-Journal of the American Medical Association, 299(24), 2877-2883.

Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., . . . Baccarelli, A. (2009). Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mechanisms of Ageing and Development, 130(4), 234-239.

Bormann, F., Rodriguez-Paredes, M., Hagemann, S., Manchanda, H., Kristof, B., Gutekunst, J., . . . Lyko, F. (2016). Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell, 15(3), 563-571.

Bornhorst, C., Siani, A., Russo, P., Kourides, Y., Sion, I., Molnar, D., Tilling, K. (2016). Early Life Factors and Inter-Country Heterogeneity in BMI Growth Trajectories of European Children: The IDEFICS Study. Plos One, 11(2).

Boyne, D. J., O'Sullivan, D. E., Olij, B. F., King, W. D., Friedenreich, C. M., & Brenner, D. R. (2018). Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev, 27(11), 1320-1331.

Brennan, K., & Flanagan, J. M. (2012). Is There a Link Between Genome-Wide Hypomethylation in Blood and Cancer Risk? Cancer Prevention Research, 5(12), 1345-1357.

Brooks, W. H., Le Dantec, C., Pers, J. O., Youinou, P., & Renaudineau, Y. (2010). Epigenetics and autoimmunity. Journal of Autoimmunity, 34(3), J207-J219.

Cheung, H. H., Lee, T. L., Davis, A. J., Taft, D. H., Rennert, O. M., & Chan, W. Y. (2010). Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. British Journal of Cancer, 102(2), 419-427.

Chouliaras, L., Rutten, B. P. F., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., . . . van den Hove, D. L. A. (2010). Epigenetic regulation in the pathophysiology of Alzheimer's disease. Progress in Neurobiology, 90(4), 498-510.

Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell, 150(1), 12-27.

Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene, 21(35), 5400-5413.

Ferioli, M., Zauli, G., Maiorano, P., Milani, D., Mirandola, P., & Neri, L. M. (2019). Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. Journal of Cellular Physiology, 234(9), 14852-14864.

Gomes, M. V. M., Toffoli, L. V., Arruda, D. W., Soldera, L. M., Pelosi, G. G., Neves-Souza, R. D., . . . Marquez, A. S. (2012). Age-Related Changes in the Global DNA Methylation Profile of Leukocytes Are Linked to Nutrition but Are Not Associated with the MTHFR C677T Genotype or to Functional Capacities. Plos One, 7(12).

Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., . . . Bauman, A. (2007). Physical activity and public health - Updated recommendation for adults from the American college of sports medicine and the American heart association. Circulation, 116(9), 1081-1093.

Ho, S. M. (2010). Environmental epigenetics of asthma: An update. Journal of Allergy and Clinical Immunology, 126(3), 453-465.

Hurley, B. F., & Roth, S. M. (2000). Strength training in the elderly - Effects on risk factors for age-related diseases. Sports Medicine, 30(4), 249-268.

Joyner, M. J., & Green, D. J. (2009). Exercise protects the cardiovascular system: effects beyond traditional risk factors. Journal of Physiology-London, 587(23), 5551-5558.

Kanai, Y. (2010). Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Science, 101(1), 36-45.

Kawakami, R., Kashino, I., Kasai, H., Kawai, K., Li, Y. S., Nanri, A., . . . Mizoue, T. (2019). Leisure-time physical activity and DNA damage among Japanese workers. Plos One, 14(2).

Kell, R. T., & Asmundson, G. J. G. (2009). A Comparison of Two Forms of Periodized Exercise Rehabilitation Programs in the Management of Chronic Nonspecific Low-Back Pain. Journal of Strength and Conditioning Research, 23(2), 513-523.

Lagerros, Y. T., Mucci, L. A., Bellocco, R., Nyren, O., Balter, O., & Balter, K. A. (2006). Validity and reliability of self-reported total energy expenditure using a novel instrument. European Journal of Epidemiology, 21(3), 227-236.

La Vecchia, C., Gallus, S., & Garattini, S. (2012). Effects of physical inactivity on non-communicable diseases. Lancet, 380(9853), 1553-1553.

Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., & Workin, L. P. A. S. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet, 380(9838), 219-229.

Luttropp, K., Nordfors, L., Ekstrom, T. J., & Lind, L. (2013). Physical activity is associated with decreased global DNA methylation in Swedish older individuals. Scandinavian Journal of Clinical & Laboratory Investigation, 73(2), 184-185.

Matzke, M. A., & Birchler, J. A. (2005). RNAi-mediated pathways in the nucleus. Nature Reviews Genetics, 6(1), 24-35.

Morabia, A., Zhang, F. F., Kappil, M. A., Flory, J., Mirer, F. E., Santella, R. M., . . . Markowitz, S. B. (2012). Biologic and epigenetic impact of commuting to work by car or using public transportation: A case-control study. Preventive Medicine, 54(3-4), 229-233.

Park, J. H., Cho, H., Shin, J. H., Kim, T., Park, S. B., Choi, B. Y., & Kim, M. J. (2014). Relationship Among Fear of Falling, Physical Performance, and Physical Characteristics of the Rural Elderly. American Journal of Physical Medicine & Rehabilitation, 93(5), 379-386.

Polli, A., Ickmans, K., Godderis, L., & Nijs, J. (2019). When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Archives of Physical Medicine and Rehabilitation, 100(6), 1153-1161.

Rogers, M. A., Hagberg, J. M., Martin, W. H., Ehsani, A. A., & Holloszy, J. O. (1990). Decline in VO2max with Aging in Master Athletes and Sedentary Men. Journal of Applied Physiology, 68(5), 2195-2199.

Romermann, D., Hasemeier, B., Metzig, K., Gohring, G., Schlegelberger, B., Langer, F., Lehmann, U. (2008). Global increase in DNA methylation in patients with myelodysplastic syndrome. Leukemia, 22(10), 1954-1956.

Sharma, R. P., Gavin, D. P., & Grayson, D. R. (2010). CpG methylation in neurons: message, memory, or mask? Neuropsychopharmacology, 35(10), 2009-2020.

Spence, R. R., Heesch, K. C., & Brown, W. J. (2011). Colorectal cancer survivors' exercise experiences and preferences: qualitative findings from an exercise rehabilitation programme immediately after chemotherapy. European Journal of Cancer Care, 20(2), 257-266.

Terry, M. B., Delgado-Cruzata, L., Vin-Raviv, N., Wu, H. C., & Santella, R. M. (2011). DNA methylation in white blood cells Association with risk factors in epidemiologic studies. Epigenetics, 6(7), 828-837.

Tra, J., Kondo, T., Lu, Q. J., Kuick, R., Hanash, S., & Richardson, B. (2002). Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mechanisms of Ageing and Development, 123(11), 1487-1503.

Tronick, E., & Hunter, R. G. (2016). Waddington, Dynamic Systems, and Epigenetics. Frontiers in Behavioral Neuroscience, 10.

Van Roekel, E. H., Dugue, P. A., Jung, C. H., Joo, J. E., Makalic, E., Wong, E. M., . . . Milne, R. L. (2019). Physical Activity, Television Viewing Time, and DNA Methylation in Peripheral Blood. Medicine and Science in Sports and Exercise, 51(3), 490-498.

Vita, A. J., Terry, R. B., Hubert, H. B., & Fries, J. F. (1998). Aging, health risks, and cumulative disability. New England Journal of Medicine, 338(15), 1035-1041.

Voisin, S., Eynon, N., Yan, X., & Bishop, D. J. (2015). Exercise training and DNA methylation in humans. Acta Physiol (Oxf), 213(1), 39-59.

Volkmar, M., Dedeurwaerder, S., Cunha, D. A., Ndlovu, M. N., Defrance, M., Deplus, R.,Fuks, F. (2012). DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. Embo Journal, 31(6), 1405-1426.

Walsh, D. W., Green, B. C., Holahan, C., Cance, J. D., & Lee, D. (2019). Healthy aging? An evaluation of sport participation as a resource.

Waxman, A., & Norum, K. R. (2004). Why a global strategy on diet, physical activity and health? The growing burden of non-communicable diseases. Public Health Nutrition, 7(3), 381-383.

Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., & Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853-862.

Wen, C. P., & Wu, X. F. (2012). Stressing harms of physical inactivity to promote exercise. Lancet, 380(9838), 192-193.

Weng, X. L., Liu, F. T., Zhang, H., Kan, M. Y., Wang, T., Dong, M. Y., & Liu, Y. (2018). Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Research and Clinical Practice, 142, 10-18.

White, A. J., Sandler, D. P., Bolick, S. C. E., Xu, Z. L., Taylor, J. A., & DeRoo, L. A. (2013). Recreational and household physical activity at different time points and DNA global methylation. European Journal of Cancer, 49(9), 2199-2206.

Woo, H. D., & Kim, J. (2012). Global DNA Hypomethylation in Peripheral Blood Leukocytes as a Biomarker for Cancer Risk: A Meta-Analysis. Plos One, 7(4).

Yu, W. Q., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A. P., & Cui, H. M. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 451(7175), 202-U210.

Yuasa, Y., Nagasaki, H., Akiyama, Y., Hashimoto, Y., Takizawa, T., Kojima, K., Nakachi, K. (2009). DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. International Journal of Cancer, 124(11), 2677-2682.

Zhang, F. F., Cardarelli, R., Carroll, J., Fulda, K. G., Kaur, M., Gonzalez, K., . . . Morabia, A. (2011). Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics, 6(5), 623-629.


Copyright (c) 2018 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.