Global DNA methylation and physical fitness of elderly athletes with lifelong endurance activity

Authors

  • Leonard Lendvorsky Comenius University, Slovakia
  • Bozena Smolkova Slovak Academy of Sciences, Slovakia
  • Verona Buocikova Slovak Academy of Sciences, Slovakia
  • Lenka Wachsmannova Slovak Academy of Sciences, Slovakia
  • Viktor Bielik Comenius University, Slovakia

DOI:

https://doi.org/10.14198/jhse.2021.164.15

Keywords:

Global DNA methylation, Physical fitness, Ageing, Endurance

Abstract

Background: Level of Global DNA methylation is associated with many diseases and the influence of physical activity is being investigated by several research groups. The aim of our study was to assess the effect of lifetime endurance physical activity on global DNA methylation, physical fitness and body composition. Methods: A total of 31 elderly males were involved in the study, divided into two groups based on differences in physical activity. The first group consisted of 18 volunteers with lifetime endurance activity (mean age: 65.1 ± 3.3 yr.; height: 174.8 ± 4.9; weight: 81.5 ± 6,1 kg; BMI: 24.2 ± 1.1). The control group consisted of thirteen elderly individuals with a sedentary lifestyle (mean age: 64.8 ± 3.1 yr.; height: 176.5 ± 5.5; weight: 87.9 ± 10.1 kg; BMI: 27.8 ± 2.9). Quantification of global DNA methylation was performed in DNA isolated from peripheral blood mononucleated cells by LINE-1 pyrosequencing. Results: Elderly individuals with lifetime endurance activity had a better level of physical fitness VO2max on average 30 % (35.7 ± 10.6 vs. 31.9 ± 7,7 ml.kg-1.min-1, p <.01) and lower mean body fat content (17.46 ± 2.52 vs. 27.8 ± 2.9 %, p < .01). Global DNA methylation did not differ between studied groups (81.1 ± 2.1 vs. 80.5 ± 1.6 %). Conclusion: Better level of physical fitness does not influence the level of the global DNA methylation in peripheral blood mononuclear cells significantly. For future research we recommended to observe DNA methylation changes in specific tissues (e.g. skeletal muscle fibres).

Funding

Slovak Research and Development Agency, Ministry of Education, Science, Research and Sport of the Slovak Republic

Downloads

Download data is not yet available.

References

Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853-859. https://doi.org/10.1016/j.jnutbio.2012.03.003

Arnett, S. W., Laity, J. H., Agrawal, S. K., & Cress, M. E. (2008). Aerobic reserve and physical functional performance in older adults. Age Ageing, 37(4), 384-389. https://doi.org/10.1093/ageing/afn022

Avery, O. T., Macleod, C. M., & McCarty, M. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med, 79(2), 137-158. https://doi.org/10.1084/jem.79.2.137

Ballard-Barbash, R., Friedenreich, C. M., Courneya, K. S., Siddiqi, S. M., McTiernan, A., & Alfano, C. M. (2012). Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review. Jnci-Journal of the National Cancer Institute, 104(11), 815-840. https://doi.org/10.1093/jnci/djs207

Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381-395. https://doi.org/10.1038/cr.2011.22

Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H. M., . . . Feinberg, A. P. (2008). Intra-individual change over time in DNA methylation with familial clustering. Jama-Journal of the American Medical Association, 299(24), 2877-2883. https://doi.org/10.1001/jama.299.24.2877

Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., . . . Baccarelli, A. (2009). Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mechanisms of Ageing and Development, 130(4), 234-239. https://doi.org/10.1016/j.mad.2008.12.003

Bormann, F., Rodriguez-Paredes, M., Hagemann, S., Manchanda, H., Kristof, B., Gutekunst, J., . . . Lyko, F. (2016). Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell, 15(3), 563-571. https://doi.org/10.1111/acel.12470

Bornhorst, C., Siani, A., Russo, P., Kourides, Y., Sion, I., Molnar, D., Tilling, K. (2016). Early Life Factors and Inter-Country Heterogeneity in BMI Growth Trajectories of European Children: The IDEFICS Study. Plos One, 11(2). https://doi.org/10.1371/journal.pone.0149268

Boyne, D. J., O'Sullivan, D. E., Olij, B. F., King, W. D., Friedenreich, C. M., & Brenner, D. R. (2018). Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev, 27(11), 1320-1331. https://doi.org/10.1158/1055-9965.EPI-18-0175

Brennan, K., & Flanagan, J. M. (2012). Is There a Link Between Genome-Wide Hypomethylation in Blood and Cancer Risk? Cancer Prevention Research, 5(12), 1345-1357. https://doi.org/10.1158/1940-6207.CAPR-12-0316

Brooks, W. H., Le Dantec, C., Pers, J. O., Youinou, P., & Renaudineau, Y. (2010). Epigenetics and autoimmunity. Journal of Autoimmunity, 34(3), J207-J219. https://doi.org/10.1016/j.jaut.2009.12.006

Cheung, H. H., Lee, T. L., Davis, A. J., Taft, D. H., Rennert, O. M., & Chan, W. Y. (2010). Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. British Journal of Cancer, 102(2), 419-427. https://doi.org/10.1038/sj.bjc.6605505

Chouliaras, L., Rutten, B. P. F., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., . . . van den Hove, D. L. A. (2010). Epigenetic regulation in the pathophysiology of Alzheimer's disease. Progress in Neurobiology, 90(4), 498-510. https://doi.org/10.1016/j.pneurobio.2010.01.002

Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell, 150(1), 12-27. https://doi.org/10.1016/j.cell.2012.06.013

Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene, 21(35), 5400-5413. https://doi.org/10.1038/sj.onc.1205651

Ferioli, M., Zauli, G., Maiorano, P., Milani, D., Mirandola, P., & Neri, L. M. (2019). Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. Journal of Cellular Physiology, 234(9), 14852-14864. https://doi.org/10.1002/jcp.28304

Gomes, M. V. M., Toffoli, L. V., Arruda, D. W., Soldera, L. M., Pelosi, G. G., Neves-Souza, R. D., . . . Marquez, A. S. (2012). Age-Related Changes in the Global DNA Methylation Profile of Leukocytes Are Linked to Nutrition but Are Not Associated with the MTHFR C677T Genotype or to Functional Capacities. Plos One, 7(12). https://doi.org/10.1371/journal.pone.0052570

Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., . . . Bauman, A. (2007). Physical activity and public health - Updated recommendation for adults from the American college of sports medicine and the American heart association. Circulation, 116(9), 1081-1093. https://doi.org/10.1161/CIRCULATIONAHA.107.185649

Ho, S. M. (2010). Environmental epigenetics of asthma: An update. Journal of Allergy and Clinical Immunology, 126(3), 453-465. https://doi.org/10.1016/j.jaci.2010.07.030

Hurley, B. F., & Roth, S. M. (2000). Strength training in the elderly - Effects on risk factors for age-related diseases. Sports Medicine, 30(4), 249-268. https://doi.org/10.2165/00007256-200030040-00002

Joyner, M. J., & Green, D. J. (2009). Exercise protects the cardiovascular system: effects beyond traditional risk factors. Journal of Physiology-London, 587(23), 5551-5558. https://doi.org/10.1113/jphysiol.2009.179432

Kanai, Y. (2010). Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Science, 101(1), 36-45. https://doi.org/10.1111/j.1349-7006.2009.01383.x

Kawakami, R., Kashino, I., Kasai, H., Kawai, K., Li, Y. S., Nanri, A., . . . Mizoue, T. (2019). Leisure-time physical activity and DNA damage among Japanese workers. Plos One, 14(2). https://doi.org/10.1371/journal.pone.0212499

Kell, R. T., & Asmundson, G. J. G. (2009). A Comparison of Two Forms of Periodized Exercise Rehabilitation Programs in the Management of Chronic Nonspecific Low-Back Pain. Journal of Strength and Conditioning Research, 23(2), 513-523. https://doi.org/10.1519/JSC.0b013e3181918a6e

Lagerros, Y. T., Mucci, L. A., Bellocco, R., Nyren, O., Balter, O., & Balter, K. A. (2006). Validity and reliability of self-reported total energy expenditure using a novel instrument. European Journal of Epidemiology, 21(3), 227-236. https://doi.org/10.1007/s10654-006-0013-y

La Vecchia, C., Gallus, S., & Garattini, S. (2012). Effects of physical inactivity on non-communicable diseases. Lancet, 380(9853), 1553-1553. https://doi.org/10.1016/S0140-6736(12)61872-8

Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., & Workin, L. P. A. S. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet, 380(9838), 219-229. https://doi.org/10.1016/S0140-6736(12)61031-9

Luttropp, K., Nordfors, L., Ekstrom, T. J., & Lind, L. (2013). Physical activity is associated with decreased global DNA methylation in Swedish older individuals. Scandinavian Journal of Clinical & Laboratory Investigation, 73(2), 184-185. https://doi.org/10.3109/00365513.2012.743166

Matzke, M. A., & Birchler, J. A. (2005). RNAi-mediated pathways in the nucleus. Nature Reviews Genetics, 6(1), 24-35. https://doi.org/10.1038/nrg1500

Morabia, A., Zhang, F. F., Kappil, M. A., Flory, J., Mirer, F. E., Santella, R. M., . . . Markowitz, S. B. (2012). Biologic and epigenetic impact of commuting to work by car or using public transportation: A case-control study. Preventive Medicine, 54(3-4), 229-233. https://doi.org/10.1016/j.ypmed.2012.01.019

Park, J. H., Cho, H., Shin, J. H., Kim, T., Park, S. B., Choi, B. Y., & Kim, M. J. (2014). Relationship Among Fear of Falling, Physical Performance, and Physical Characteristics of the Rural Elderly. American Journal of Physical Medicine & Rehabilitation, 93(5), 379-386. https://doi.org/10.1097/PHM.0000000000000009

Polli, A., Ickmans, K., Godderis, L., & Nijs, J. (2019). When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Archives of Physical Medicine and Rehabilitation, 100(6), 1153-1161. https://doi.org/10.1016/j.apmr.2018.09.118

Rogers, M. A., Hagberg, J. M., Martin, W. H., Ehsani, A. A., & Holloszy, J. O. (1990). Decline in VO2max with Aging in Master Athletes and Sedentary Men. Journal of Applied Physiology, 68(5), 2195-2199. https://doi.org/10.1152/jappl.1990.68.5.2195

Romermann, D., Hasemeier, B., Metzig, K., Gohring, G., Schlegelberger, B., Langer, F., Lehmann, U. (2008). Global increase in DNA methylation in patients with myelodysplastic syndrome. Leukemia, 22(10), 1954-1956. https://doi.org/10.1038/leu.2008.76

Sharma, R. P., Gavin, D. P., & Grayson, D. R. (2010). CpG methylation in neurons: message, memory, or mask? Neuropsychopharmacology, 35(10), 2009-2020. https://doi.org/10.1038/npp.2010.85

Spence, R. R., Heesch, K. C., & Brown, W. J. (2011). Colorectal cancer survivors' exercise experiences and preferences: qualitative findings from an exercise rehabilitation programme immediately after chemotherapy. European Journal of Cancer Care, 20(2), 257-266. https://doi.org/10.1111/j.1365-2354.2010.01214.x

Terry, M. B., Delgado-Cruzata, L., Vin-Raviv, N., Wu, H. C., & Santella, R. M. (2011). DNA methylation in white blood cells Association with risk factors in epidemiologic studies. Epigenetics, 6(7), 828-837. https://doi.org/10.4161/epi.6.7.16500

Tra, J., Kondo, T., Lu, Q. J., Kuick, R., Hanash, S., & Richardson, B. (2002). Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mechanisms of Ageing and Development, 123(11), 1487-1503. https://doi.org/10.1016/S0047-6374(02)00080-5

Tronick, E., & Hunter, R. G. (2016). Waddington, Dynamic Systems, and Epigenetics. Frontiers in Behavioral Neuroscience, 10. https://doi.org/10.3389/fnbeh.2016.00107

Van Roekel, E. H., Dugue, P. A., Jung, C. H., Joo, J. E., Makalic, E., Wong, E. M., . . . Milne, R. L. (2019). Physical Activity, Television Viewing Time, and DNA Methylation in Peripheral Blood. Medicine and Science in Sports and Exercise, 51(3), 490-498. https://doi.org/10.1249/MSS.0000000000001827

Vita, A. J., Terry, R. B., Hubert, H. B., & Fries, J. F. (1998). Aging, health risks, and cumulative disability. New England Journal of Medicine, 338(15), 1035-1041. https://doi.org/10.1056/NEJM199804093381506

Voisin, S., Eynon, N., Yan, X., & Bishop, D. J. (2015). Exercise training and DNA methylation in humans. Acta Physiol (Oxf), 213(1), 39-59. https://doi.org/10.1111/apha.12414

Volkmar, M., Dedeurwaerder, S., Cunha, D. A., Ndlovu, M. N., Defrance, M., Deplus, R.,Fuks, F. (2012). DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. Embo Journal, 31(6), 1405-1426. https://doi.org/10.1038/emboj.2011.503

Walsh, D. W., Green, B. C., Holahan, C., Cance, J. D., & Lee, D. (2019). Healthy aging? An evaluation of sport participation as a resource. https://doi.org/10.1080/00222216.2018.1554092

Waxman, A., & Norum, K. R. (2004). Why a global strategy on diet, physical activity and health? The growing burden of non-communicable diseases. Public Health Nutrition, 7(3), 381-383. https://doi.org/10.1079/PHN2004623

Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., & Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853-862. https://doi.org/10.1038/ng1598

Wen, C. P., & Wu, X. F. (2012). Stressing harms of physical inactivity to promote exercise. Lancet, 380(9838), 192-193. https://doi.org/10.1016/S0140-6736(12)60954-4

Weng, X. L., Liu, F. T., Zhang, H., Kan, M. Y., Wang, T., Dong, M. Y., & Liu, Y. (2018). Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Research and Clinical Practice, 142, 10-18. https://doi.org/10.1016/j.diabres.2018.03.016

White, A. J., Sandler, D. P., Bolick, S. C. E., Xu, Z. L., Taylor, J. A., & DeRoo, L. A. (2013). Recreational and household physical activity at different time points and DNA global methylation. European Journal of Cancer, 49(9), 2199-2206. https://doi.org/10.1016/j.ejca.2013.02.013

Woo, H. D., & Kim, J. (2012). Global DNA Hypomethylation in Peripheral Blood Leukocytes as a Biomarker for Cancer Risk: A Meta-Analysis. Plos One, 7(4). https://doi.org/10.1371/journal.pone.0034615

Yu, W. Q., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A. P., & Cui, H. M. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 451(7175), 202-U210. https://doi.org/10.1038/nature06468

Yuasa, Y., Nagasaki, H., Akiyama, Y., Hashimoto, Y., Takizawa, T., Kojima, K., Nakachi, K. (2009). DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. International Journal of Cancer, 124(11), 2677-2682. https://doi.org/10.1002/ijc.24231

Zhang, F. F., Cardarelli, R., Carroll, J., Fulda, K. G., Kaur, M., Gonzalez, K., . . . Morabia, A. (2011). Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics, 6(5), 623-629. https://doi.org/10.4161/epi.6.5.15335

Statistics

Statistics RUA

Published

2021-11-11

How to Cite

Lendvorsky, L., Smolkova, B., Buocikova, V., Wachsmannova, L., & Bielik, V. (2021). Global DNA methylation and physical fitness of elderly athletes with lifelong endurance activity. Journal of Human Sport and Exercise, 16(4), 929–941. https://doi.org/10.14198/jhse.2021.164.15

Issue

Section

Sport Medicine, Nutrition & Health

Most read articles by the same author(s)