Force control characteristics for generation and relaxation compared between the upper and lower limbs
DOI:
https://doi.org/10.14198/jhse.2022.171.17Keywords:
Motor control, Biomechanics, Grading ability, IsometricAbstract
We investigated the characteristics for force generation and relaxation compared between upper and lower limb. Participants were instructed to control the force of isometric elbow flexion or knee extension as quickly and accurately as possible. They performed the following two tasks: 1) Generation task, they increased their force from 0% maximum voluntary force (MVF) to 20%, 40%, or 60% MVF, 2) Relaxation tasks, they decreased their force from 60% MVF to 40%, 20%, or to 0% MVF. As a result, variable error of upper limb was greater than that of lower limb at all magnitudes in generation task. The peak rate of force development was greater in lower limb than in upper limb at all magnitudes in both tasks. The results indicate that it is more difficult to control relaxation of force accurately by upper limb than by lower limb under conditions that involve forces with low magnitude of control.
Downloads
References
Buccolieri, A., Avanzino, L., Trompetto, C., & Abbruzzese, G. (2003). Relaxation in distal and proximal arm muscles: a reaction time study. Clin Neurophysiol, 114, 313-318. https://doi.org/10.1016/s1388-2457(02)00379-6
Chapman, J. P., Chapman, L. J., & Allen, J. J. (1987). The measurement of foot preference. Neuropsychologia, 25, 579-584. https://doi.org/10.1016/0028-3932(87)90082-0
Clarke, D. H. (1968). Effect of preliminary muscular tension on reaction latency. Res Quart, 39, 60-66.
Denier van der Gon, J. J., ter Haar Romeny, B. M., van Zuylen, E. J. (1985). Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation. J Physiol, 359, 107-118. https://doi.org/10.1113/jphysiol.1985.sp015577
Freund, H. -J., & Büdingen, H. J. (1978). The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exp Brain Res, 31, 1-12. https://doi.org/10.1007/bf00235800
Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage, 17, 1820-1829. https://doi.org/10.1006/nimg.2002.1326
Gordon, J., & Ghez, C. (1987). Trajectory control in targeted force impulses. Ⅱ. Pulse height control. Exp Brain Res, 67, 241-252. https://doi.org/10.1007/bf00248546
Gottlieb, G. L., Corcos, D. M., & Agarwal, G. C. (1989). Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav Brain Sci, 12, 189-210. https://doi.org/10.1017/s0140525x00048238
Haagh, S. A. V. M., Spijkers, W. A. C., Boogaart, B., & Boxtel, A. (1987). Fractioned reaction time as a function of response force. Acta Psychol, 66, 21-35. https://doi.org/10.1016/0001-6918(87)90016-3
Harbst, K. B., Lazarus, J. C., & Whitall, J. (2000). Accuracy of dynamic isometric force production: The influence of age and bimanual activation patterns. Motor Control, 4, 232-256. https://doi.org/10.1123/mcj.4.2.232
Kato, K., Muraoka, T., Higuchi, T., Mizuguchi, N., & Kanosue, K. (2014). Interaction between simultaneous contraction and relaxation in different limbs. Exp Brain Res, 232, 181-189. https://doi.org/10.1007/s00221-013-3730-y
Kato, K., Vogt, T., & Kanosue, K. (2019). Brain activity underlying muscle relaxation. Front Physiol, 10, 1457. https://doi.org/10.3389/fphys.2019.01457
Li, S. (2013). Analysis of increasing and decreasing isometric finger force generation and the possible role of the corticospinal system in this process. Motor Control, 17, 221-237. https://doi.org/10.1123/mcj.17.3.221
Lindahl, O., Movin, A., & Ringqvist, I. (1969). Knee extension: Measurement of the isometric force in different positions of the knee-joint. Acta Orthop Scand, 40, 79-85. https://doi.org/10.3109/17453676908989487
Masumoto, J., & Inui, N. (2010). Control of increasing or decreasing force during periodic isometric movement of the finger. Hum Movement Sci, 29, 339-348. https://doi.org/10.1016/j.humov.2009.11.006
Moritou, T., Inui, N., & Masumoto, J. (2009). Control of muscle force and timing during the periodic isometric pressing movement of the index finger. Res Phys Educ, 54, 67-76. https://doi.org/10.5432/jjpehss.a540106
Ohtaka, C., & Fujiwara, M. (2016). Control strategies for accurate force generation and relaxation, Percept Motor Skill, 123, 489-507. https://doi.org/10.1177/0031512516664778
Ohtaka, C., & Fujiwara, M. (2019). Force control characteristics for generation and relaxation in the lower limb, J Motor Behav, 51, 331-341. https://doi.org/10.1080/00222895.2018.1474337
Ohtaka, C., & Fujiwara, M. (2020). Force control characteristics for generation and relaxation in the lower limb, Res J Sport Sci, 22, in press.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
Ono, S., Okada, M., Kizuka, T., & Tanii, K. (1997). Relationship between force level and exertion strategy in rapid isometric contractions. Jpn J Phys Fit Sport, 46, 289-295. https://doi.org/10.7600/jspfsm1949.46.289
Pope, P. A., Holton, A., Hassan, S., Kourtis, D., & Praamstra, P. (2007). Cortical control of muscle relaxation: a lateralized readiness potential (LRP) investigation. Clin Neurophysiol, 118, 1044-1052. https://doi.org/10.1016/j.clinph.2007.02.002
Rothwell, J. C., Higuchi, K., & Obeso, J. A. (1998). The offset cortical potential: an electrical correlate of movement inhibition in man. J Movement Disord, 13, 330-335. https://doi.org/10.1002/mds.870130221
Sadamoto, T., & Ohtsuki, T. (1977). Accuracy of output control in jumping: characteristics in grading and reproduction of distance Jumped. Res Phys Educ, 22, 215-229.
Schmidt, R. A., & Stull, G. A. (1970). Premotor and motor reaction time as a function of preliminary muscular tension. J Motor Behav, 11, 96-110. https://doi.org/10.1080/00222895.1970.10734868
Shim, J. K., Olafsdottir, H., Zatsiorsky, V. M., & Latash, M. L. (2005). The emergence and disappearance of multi-digit synergies during force-production tasks. Exp Brain Res, 164, 260-270. https://doi.org/10.1007/s00221-005-2248-3
Spiegel, K. M., Stratton, J., Burke, J. R., Glendinning, D. S., & Enoka, R. M. (1996). The influence of age on the assessment of motor unit activation in a human hand muscle. Exp Physiol, 81, 805-819. https://doi.org/10.1113/expphysiol.1996.sp003978
Spraker, M. B., Corcos, D. M., & Vaillancourt, D. E. (2009). Cortical and subcortical mechanisms for precisely controlled force generation and force relaxation. Cereb Cortex, 19, 2640-2650. https://doi.org/10.1093/cercor/bhp015
Stevens, J. C., & Mack, J. D. (1959). Scales of apparent force. J Exp Psychol, 58, 405-413.
Terada, K., Ikeda, A., Nagamine, H., & Shibasaki, H. (1995). Movement-related cortical potentials associated with voluntary muscle relaxation. Electroen Clin Neuro, 95, 335-345. https://doi.org/10.1016/0013-4694(95)00098-j
Terada, K., Ikeda, A., Yazawa, S., Nagamine, H., & Shibasaki, H. (1999). Movement-related cortical potentials associated with voluntary relaxation of foot muscles. Clin Neurophysiol, 110, 397-403. https://doi.org/10.1016/s1388-2457(98)00017-0
Toma, K., Honda, M., Hanakawa, H., Okada, T., Fukuyama, H., Ikeda, A., Nishizawa, S., Konishi, J., & Shibasaki, H. (1999). Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci, 19, 3527-3534. https://doi.org/10.1523/jneurosci.19-09-03527.1999
Tsunoda, N., Watanabe, T., & Horikawa, H. (1987). Effect of joint angle on maximal voluntary isometric knee extension strength. Kokushikan U Stud Phys Educ, 13, 21-25.
Vogt, T., Kato, K., Flüthmann, N., Bloch, O., Nakata, H., & Kanosue, K. (2018). Performance control in one consecutive motor task sequence: Approaching central neuronal motor behaviour preceding isometric contraction onsets and relaxation offsets at lower distinct torques. J Musculoskelet. Neuronal Interact, 18, 1-8.
Yotani, K., Nakamoto, H., Ikudome, S., & Atsumi, Y. (2014). Muscle contraction and relaxation-response time in response to on or off status of visual stimulus. J Physiol Anthropol, 33, 23. https://doi.org/10.1186/1880-6805-33-23
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.