The effect of downhill running conditions on muscle damage in recreationally active adults


  • Robert Southall-Edwards University of Essex, United Kingdom
  • Sue Innes University of Essex, United Kingdom
  • Ajmol Ali Massey University, New Zealand
  • Ben Jones University of Essex, United Kingdom



Force loss, Muscle soreness, Gradient, Duration, Physiology, Exercise


Background: Downhill running (DR) has been used extensively to investigate recovery from muscle-damaging exercise. There is no consensus on the optimal conditions (duration, severity, intensity) for a DR protocol. The purpose of this research was to determine the most effective DR conditions to induce muscle damage. Methods: The research was comprised a 3x3 within-between participant design. Recreationally active males’ (n = 12) muscle damage was assessed using gold standard indirect markers (force loss and muscle soreness) at baseline, 24 and 48h post one of three DR conditions (a. 45min at -10% gradient b. 45min at -12% c. 30min at -15%). DR was completed on a motorised treadmill at 70% velocity of V̇O2peak achieved during an incremental exercise test to exhaustion. Results: Isometric force (p = .005, ηp2 = 0.45) and muscle soreness (p = .002, ηp2 = 0.49) were impaired 24h post-exercise; no difference (p > .05) was evident between conditions. At 48h the impairments in force loss and muscle soreness were no longer evident (p > .05) across all conditions. There was no difference (p = .82) in HR between the DR conditions. Findings: Independent of duration and gradient all conditions resulted in a similar response in force loss and muscle soreness, indicating muscle damage had occurred. Interestingly, the 30-min protocol produced the same response in less time, without requiring individuals to work at a greater intensity. Therefore, the 30-min condition is suggested as the most appropriate protocol for use in the scientific investigation of muscle damage from DR.


Download data is not yet available.


Baumann, C. W., Green, M. S., Doyle, J. A., Rupp, J. C., Ingalls, C. P., & Corona, B. T. (2014). Muscle injury after low-intensity downhill running reduces running economy. J Strength Cond Res, 28(5), 1212-1218.

Braun, W. A., & Dutto, D. J. (2003). The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur J Appl Physiol, 90(1-2), 29-34.

Brown, M. A., Howatson, G., Keane, K., & Stevenson, E. J. (2016a). Exercise-induced muscle damage following dance and sprint-specific exercise in females. J Sports Med Phys Fitness, 56(11), 1376-1383.

Brown, M. A., Howatson, G., Keane, K. M., & Stevenson, E. J. (2016b). Adaptation to Damaging Dance and Repeated-Sprint Activity in Women. Journal of strength and conditioning research, 30(9), 2574-2581.

Burr, J. F., Boulter, M., & Beck, K. (2015). Arterial stiffness results from eccentrically biased downhill running exercise. J Sci Med Sport, 18(2), 230-235.

Byrnes, W. C., Clarkson, P. M., White, J. S., Hsieh, S. S., Frykman, P. N., & Maughan, R. J. (1985). Delayed onset muscle soreness following repeated bouts of downhill running. J Appl Physiol (1985), 59(3), 710-715.

Chen, T. C., Nosaka, K., & Tu, J. H. (2007). Changes in running economy following downhill running. J Sports Sci, 25(1), 55-63.

Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. Am J Phys Med Rehabil, 81(11 Suppl), S52-69.

Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc, 24(5), 512-520.

Close, G. L., Ashton, T., Cable, T., Doran, D., & MacLaren, D. P. (2004). Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. Eur J Appl Physiol, 91(5-6), 615-621.

Doma, K., Leicht, A., Sinclair, W., Schumann, M., Damas, F., Burt, D., & Woods, C. (2018). Impact of Exercise-Induced Muscle Damage on Performance Test Outcomes in Elite Female Basketball Players. J Strength Cond Res, 32(6), 1731-1738.

Eston, R., Lemmey, A., McHugh, P., Byrne, C., & Walsh, S. (2000). Effect of stride length on symptoms of exercise‐induced muscle damage during a repeated bout of downhill running. Scand J Med Sci Sports, 10(4), 199-204.

Eston, R. G., Mickleborough, J., & Baltzopoulos, V. (1995). Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. Br J Sports Med, 29(2), 89-94.

Féasson, L., Stockholm, D., Freyssenet, D., Richard, I., Duguez, S., Beckmann, J. S., & Denis, C. (2002). Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. The Journal of physiology, 543(1), 297-306.

GOV.Uk. (2019, 7th September). UK Chief Medical Officers' Physical Activity Guidelines. Gov UK.

Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve, 49(2), 155-170.

Kargarfard, M., Lam, E. T., Shariat, A., Shaw, I., Shaw, B. S., & Tamrin, S. B. (2016). Efficacy of massage on muscle soreness, perceived recovery, physiological restoration and physical performance in male bodybuilders. J Sports Sci, 34(10), 959-965.

Kolkhorst, F. W., Mittelstadt, S. W., & Dolgener, F. A. (1996). Perceived exertion and blood lactate concentration during graded treadmill running. Eur J Appl Physiol Occup Physiol, 72(3), 272-277.

Konings, M. J., Parkinson, J., Zijdewind, I., & Hettinga, F. J. (2018). Racing an Opponent: Alteration of Pacing, Performance, and Muscle-Force Decline but Not Rating of Perceived Exertion. Int J Sports Physiol Perform, 13(3), 283-289.

Koskinen, S. O., Hoyhtya, M., Turpeenniemi-Hujanen, T., Martikkala, V., Makinen, T. T., Oksa, J., Rintamaki, H., Lofberg, M., Somer, H., & Takala, T. E. (2001). Serum concentrations of collagen degrading enzymes and their inhibitors after downhill running. Scand J Med Sci Sports, 11(1), 9-15.

Machado, F. A., Kravchychyn, A. C., Peserico, C. S., da Silva, D. F., & Mezzaroba, P. V. (2013). Incremental test design, peak 'aerobic' running speed and endurance performance in runners. J Sci Med Sport, 16(6), 577-582.

Maeo, S., Ando, Y., Kanehisa, H., & Kawakami, Y. (2017). Localization of damage in the human leg muscles induced by downhill running. Sci Rep, 7(1), 5769.

Malm, C., Sjodin, T. L., Sjoberg, B., Lenkei, R., Renstrom, P., Lundberg, I. E., & Ekblom, B. (2004). Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol, 556(Pt 3), 983-1000.

Nottle, C., & Nosaka, K. (2007). Changes in power assessed by the Wingate Anaerobic Test following downhill running. J Strength Cond Res, 21(1), 145-150.

Park, K. S., & Lee, M. G. (2015). Effects of unaccustomed downhill running on muscle damage, oxidative stress, and leukocyte apoptosis. J Exerc Nutrition Biochem, 19(2), 55-63.

Peake, J. M., Suzuki, K., Hordern, M., Wilson, G., Nosaka, K., & Coombes, J. S. (2005a). Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur J Appl Physiol, 95(5-6), 514-521.

Peake, J. M., Suzuki, K., Wilson, G., Hordern, M., Nosaka, K., Mackinnon, L., & Coombes, J. S. (2005b). Exercise-Induced Muscle Damage, Plasma Cytokines, and Markers of Neutrophil Activation. Medicine & Science in Sports & Exercise, 37(5), 737-745.

Rowlands, A. V., Eston, R. G., & Tilzey, C. (2001). Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. J Sports Sci, 19(5), 333-340.

Schwane, J. A., Watrous, B. G., Johnson, S. R., & Armstrong, R. B. (1983). Is Lactic Acid Related to Delayed-Onset Muscle Soreness? Phys Sportsmed, 11(3), 124-131.

Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., & Puschendorf, B. (2001). Release of muscle proteins after downhill running in male and female subjects. Scand J Med Sci Sports, 11(1), 28-32.

van de Vyver, M., Engelbrecht, L., Smith, C., & Myburgh, K. H. (2016). Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports, 26(6), 638-647.

van de Vyver, M., & Myburgh, K. H. (2014). Variable inflammation and intramuscular STAT3 phosphorylation and myeloperoxidase levels after downhill running. Scand J Med Sci Sports, 24(5), e360-371.

Warren, G. L., Lowe, D. A., & Armstrong, R. B. (1999). Measurement tools used in the study of eccentric contraction-induced injury. Sports Med, 27(1), 43-59.


Statistics RUA



How to Cite

Southall-Edwards, R., Innes, S., Ali, A., & Jones, B. (2022). The effect of downhill running conditions on muscle damage in recreationally active adults. Journal of Human Sport and Exercise, 17(2), 400–408.



Sport Medicine, Nutrition & Health