Muscle genomics and aerobic training




Aerobic training, Muscle, DNA microarray, Differential expression, Network


The performance in physical activity is determined not only by physiological processes such as age, body composition, gender and degree of training, but also by the genomics and even epigenetic events occurring during the training programs. In this context, using bioinformatics resources, we aimed to analyse the expression of genes associated with muscle function in vastus lateral samples. We used data from DNA microarray experiments reported in NCBI's GEO DataSet database under the series number GSE117070. Differential expression was calculated using the Z-ratio equation. We also used the software Cytoscape 3.6 to build a protein-protein interaction network with over-expressed genes. We found that seven genes out of the 397 genes analysed in the 41 individuals subjected to aerobic exercise with an increase in training intensity through the percentage of VO2max, were over-expressed based on the statistical approach. The Protein-Protein Interaction (PPI) network showed 477 nodes, two connected components, 17 multi-edge node pairs and an average number of neighbours of 2.092. The node with the highest number of interactions was TPM1 with 150. GO categories of biological processes most relevant of the network included indispensable processes for muscle function and contraction such as polymerization of actin filaments and ATP synthesis from electron transport chain.


Universidad del Valle, University Institution National Sports School


Download data is not yet available.


Bouchard, C. L. (1995). The heritage family study. Aims, design, and measurement protocol. Medicine and science in sports and exercise, 27(5), 721-729.

Cheadle, C. V. (2003). Análisis de datos de microarrays utilizando la transformación de puntuación Z. . J Mol Diag: JMD. 5 (2): 73-81.

Chicharro, J. L., & Vaquero, A. F. (2006). Fisiología del ejercicio. Madrid: Ed. Médica Panamericana.

Colberg, S. R. (2016). Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes care, 39(11), 2065-2079.

De Palma, S., Capitanio, D., Vasso, M., Braghetta, P., Scotton, C., Bonaldo, P., & Gelfi, C. (2014). Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies. Journal of proteome research, 5022-5030.

Di Prampero, P. E., Botter, A., & Osgnach, C. (2015). The energy cost of sprint running and the role of metabolic power in setting top performances. European journal of applied physiology, 115(3), 451-469.

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. . Cell metabolism, 17(2), 162-184.

Gonzalez‐Freire, M., Semba, R. D., Ubaida‐Mohien, C., Fabbri, E., Scalzo, P., Højlund, K., & Ferrucci, L. (2017). The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. Journal of cachexia, sarcopenia and muscle, 8(1), 5-18.

Kanazawa, Y., Ikegami, K., Sujino, M., Koinuma, S., Nagano, M. O., & Shigeyoshi, Y. (2019). Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Experimental gerontology, 98, 153-161.

Liu, D., Sartor, M. A., Nader, G. A., Gutmann, L., Treutelaar, M. K., Pistilli, E. E., & Gordon, P. M. (2010). Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC genomics, 11(1), 659.

Lortie, G. S. (1984). Responses of maximal aerobic power and capacity to aerobic training. International journal of sports medicine, 5(05), 232-236.

Pilegaard, H., Ordway, G., Saltin, B., & Neufer, P. (2000). Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab, 279, E806-E814.

Rockman, M. V., & Kruglyak, L. (2006). Genetics of global gene expression. . Nature Reviews Genetics, 7(11), 862-872.

Rowlands, D. S., Thomson, J. S., Timmons, B. W., Raymond, F., Fuerholz, A., Mansourian, R., & Kussmann, M. (2011). Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiological Genomics, 43(17), 1004-1020.

Saltin, B., Henriksson, J., Nygaard, E., Andersen, P., & Jansson, E. (1977). Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Annals of the New York Academy of Sciences,, 1(301), 3-29.

Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian journal of medicine & science in sports, 26(6), 648-658.

Sela, I., Krentsis, I. M., Shlomai, Z., Sadeh, M., Dabby, R., Argov, Z., & Mitrani-Rosenbaum, S. (2011). The proteomic profile of hereditary inclusion body myopathy. PLoS One, 6(1), e16334.

Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., & Åkerström, T. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of applied physiology, 108(6), 1487-1496.

Trappe, S., Luden, N., Minchev, K., Raue, U., Jemiolo, B., & Trappe, T. A. (2015). Skeletal muscle signature of a champion sprint runner. Journal of Applied Physiology, 12 (118), 1460-1466.

Turner, D. C., Seaborne, R. A., & Sharples, A. P. (2019). Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Scientific reports, 9(1), 4251.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, 101(1), 5-22.

Wasserman, K., Hansen, J. E., Sue, D. Y., Whipp, B. J., & Froelicher, V. F. (1987). Principles of exercise testing and interpretation. Journal of Cardiopulmonary Rehabilitation and Prevention(7(4), 189).

Xu, Q., Wu, N., Cui, L., Wu, Z., & Qiu, G. (2017 ). Filamin B: the next hotspot in skeletal research? Journal of Genetics and Genomics, 44(7), 335-342.


Statistics RUA



How to Cite

Mina-Paz, Y., Zambrano, D. C., Matta, A. J., Rodríguez, A., & García-Vallejo, F. (2022). Muscle genomics and aerobic training. Journal of Human Sport and Exercise, 17(3), 598–608.



Sport Medicine, Nutrition & Health

Most read articles by the same author(s)