Muscle genomics and aerobic training

Authors

DOI:

https://doi.org/10.14198/jhse.2022.173.11

Keywords:

Aerobic training, Muscle, DNA microarray, Differential expression, Network

Abstract

The performance in physical activity is determined not only by physiological processes such as age, body composition, gender and degree of training, but also by the genomics and even epigenetic events occurring during the training programs. In this context, using bioinformatics resources, we aimed to analyse the expression of genes associated with muscle function in vastus lateral samples. We used data from DNA microarray experiments reported in NCBI's GEO DataSet database under the series number GSE117070. Differential expression was calculated using the Z-ratio equation. We also used the software Cytoscape 3.6 to build a protein-protein interaction network with over-expressed genes. We found that seven genes out of the 397 genes analysed in the 41 individuals subjected to aerobic exercise with an increase in training intensity through the percentage of VO2max, were over-expressed based on the statistical approach. The Protein-Protein Interaction (PPI) network showed 477 nodes, two connected components, 17 multi-edge node pairs and an average number of neighbours of 2.092. The node with the highest number of interactions was TPM1 with 150. GO categories of biological processes most relevant of the network included indispensable processes for muscle function and contraction such as polymerization of actin filaments and ATP synthesis from electron transport chain.

Funding

Universidad del Valle, University Institution National Sports School

Downloads

Download data is not yet available.

References

Bouchard, C. L. (1995). The heritage family study. Aims, design, and measurement protocol. Medicine and science in sports and exercise, 27(5), 721-729. https://doi.org/10.1249/00005768-199505000-00015

Cheadle, C. V. (2003). Análisis de datos de microarrays utilizando la transformación de puntuación Z. . J Mol Diag: JMD. 5 (2): 73-81.

Chicharro, J. L., & Vaquero, A. F. (2006). Fisiología del ejercicio. Madrid: Ed. Médica Panamericana.

Colberg, S. R. (2016). Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes care, 39(11), 2065-2079. https://doi.org/10.2337/dc16-1728

De Palma, S., Capitanio, D., Vasso, M., Braghetta, P., Scotton, C., Bonaldo, P., & Gelfi, C. (2014). Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies. Journal of proteome research, 5022-5030. https://doi.org/10.1021/pr500675e

Di Prampero, P. E., Botter, A., & Osgnach, C. (2015). The energy cost of sprint running and the role of metabolic power in setting top performances. European journal of applied physiology, 115(3), 451-469. https://doi.org/10.1007/s00421-014-3086-4

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. . Cell metabolism, 17(2), 162-184. https://doi.org/10.1016/j.cmet.2012.12.012

Gonzalez‐Freire, M., Semba, R. D., Ubaida‐Mohien, C., Fabbri, E., Scalzo, P., Højlund, K., & Ferrucci, L. (2017). The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. Journal of cachexia, sarcopenia and muscle, 8(1), 5-18. https://doi.org/10.1002/jcsm.12121

Kanazawa, Y., Ikegami, K., Sujino, M., Koinuma, S., Nagano, M. O., & Shigeyoshi, Y. (2019). Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Experimental gerontology, 98, 153-161. https://doi.org/10.1016/j.exger.2017.08.014

Liu, D., Sartor, M. A., Nader, G. A., Gutmann, L., Treutelaar, M. K., Pistilli, E. E., & Gordon, P. M. (2010). Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC genomics, 11(1), 659. https://doi.org/10.1186/1471-2164-11-659

Lortie, G. S. (1984). Responses of maximal aerobic power and capacity to aerobic training. International journal of sports medicine, 5(05), 232-236. https://doi.org/10.1055/s-2008-1025911

Pilegaard, H., Ordway, G., Saltin, B., & Neufer, P. (2000). Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab, 279, E806-E814. https://doi.org/10.1152/ajpendo.2000.279.4.e806

Rockman, M. V., & Kruglyak, L. (2006). Genetics of global gene expression. . Nature Reviews Genetics, 7(11), 862-872. https://doi.org/10.1038/nrg1964

Rowlands, D. S., Thomson, J. S., Timmons, B. W., Raymond, F., Fuerholz, A., Mansourian, R., & Kussmann, M. (2011). Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiological Genomics, 43(17), 1004-1020. https://doi.org/10.1152/physiolgenomics.00073.2011

Saltin, B., Henriksson, J., Nygaard, E., Andersen, P., & Jansson, E. (1977). Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Annals of the New York Academy of Sciences,, 1(301), 3-29. https://doi.org/10.1111/j.1749-6632.1977.tb38182.x

Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian journal of medicine & science in sports, 26(6), 648-658. https://doi.org/10.1111/sms.12490

Sela, I., Krentsis, I. M., Shlomai, Z., Sadeh, M., Dabby, R., Argov, Z., & Mitrani-Rosenbaum, S. (2011). The proteomic profile of hereditary inclusion body myopathy. PLoS One, 6(1), e16334. https://doi.org/10.1371/journal.pone.0016334

Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., & Åkerström, T. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of applied physiology, 108(6), 1487-1496. https://doi.org/10.1152/japplphysiol.01295.2009

Trappe, S., Luden, N., Minchev, K., Raue, U., Jemiolo, B., & Trappe, T. A. (2015). Skeletal muscle signature of a champion sprint runner. Journal of Applied Physiology, 12 (118), 1460-1466. https://doi.org/10.1152/japplphysiol.00037.2015

Turner, D. C., Seaborne, R. A., & Sharples, A. P. (2019). Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Scientific reports, 9(1), 4251. https://doi.org/10.1101/465708

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, 101(1), 5-22. https://doi.org/10.1016/j.ajhg.2017.06.005

Wasserman, K., Hansen, J. E., Sue, D. Y., Whipp, B. J., & Froelicher, V. F. (1987). Principles of exercise testing and interpretation. Journal of Cardiopulmonary Rehabilitation and Prevention(7(4), 189). https://doi.org/10.1097/00008483-198704000-00014

Xu, Q., Wu, N., Cui, L., Wu, Z., & Qiu, G. (2017 ). Filamin B: the next hotspot in skeletal research? Journal of Genetics and Genomics, 44(7), 335-342. https://doi.org/10.1016/j.jgg.2017.04.007

Statistics

Statistics RUA

Published

2022-07-01

How to Cite

Mina-Paz, Y., Zambrano, D. C., Matta, A. J., Rodríguez, A., & García-Vallejo, F. (2022). Muscle genomics and aerobic training. Journal of Human Sport and Exercise, 17(3), 598–608. https://doi.org/10.14198/jhse.2022.173.11

Issue

Section

Sport Medicine, Nutrition & Health

Most read articles by the same author(s)