Risk of injury analysis in depth jump and squat jump
DOI:
https://doi.org/10.14198/jhse.2022.174.05Keywords:
Kinematics, Kinetics, Knee assessment, Trunk assessment, Drop jump, L5/S1 vertebraeAbstract
Introduction: The depth jump (DJ) and squat jump (SJ) are accepted ways to assess and train power producing ability but are not without risk of injury. Methods: Sixteen male participants (age = 21.7 ± 1.54 yrs., height = 177.7 ± 11.4 cm, mass = 77.7 ± 13.6 kg) were evaluated for power exertion capabilities while being assessed for risk of injury in the knee and low back through a range of resistances based on a percentage of participants’ heights in the DJ (0% through 50%) and bodyweights for the SJ (0% through 100%). Two variables were used to assess the risk of injury in the knee: valgus angle and internal abduction moment (IAM). Four variables were used in the low back: compression and shear force at the L5/S1 vertebrae, intra-abdominal pressure (IAP), and erector muscle tension. Results: With increasing DJ drop height, participants showed increased risk of injury in the knee through the valgus angle and IAM. In the low back, significant correlation occurred between increasing drop height and the shear force and IAP while compression force and erector muscle tension were more correlated with the power exertion of the participants than the drop height. With increasing SJ resistance, no significant increased risk of knee injury was detected. However, all low back variables except the IAP were significantly influenced by the increased resistance. Conclusion: Risk of injury in the knee and low back can be strongly dependent not only on the type of jump, but also the amount of resistance. The resulting power exerted by the athlete can also influence the risk of injury.
Downloads
References
Adams, M. A., & Hutton, W. C. (1982). Prolapsed intervertebral disc: A hyperflexion injury. Spine, 7(3), 184–191. https://doi.org/10.1097/00007632-198205000-00002
Adams MA. (2004). Biomechanics of back pain. Acupuncture in Medicine, 22(4), 178–188.
Anderson, C. K., Chaffin, D. B., Herrin, G. D., & Matthews, L. S. (1985). A biomechanical model of the lumbosacral joint during lifting activities. Journal of Biomechanics, 18(8), 571–584. https://doi.org/10.1016/0021-9290(85)90012-0
Andersson, G. (1997). The epidemiology of Spinal Disorders. In Frymoyer, J.(Ed.) The Adult Spine: Principles and Practice. Philadephia. New York: Raven Press.
Ashby, B. M., & Delp, S. L. (2006). Optimal control simulations reveal mechanisms by which arm movement improves standing long jump performance. Journal of Biomechanics, 39(9), 1726–1734. https://doi.org/10.1016/j.jbiomech.2005.04.017
Ashby, B. M., & Heegaard, J. H. (2002). Role of arm motion in the standing long jump. Journal of Biomechanics, 35(12), 1631–1637. https://doi.org/10.1016/s0021-9290(02)00239-7
Bobbert, M. F., Mackay, M., Schinkelshoek, D., Huijing, P. A., & van Ingen Schenau, G. J. (1986). Biomechanical analysis of drop and countermovement jumps. European Journal of Applied Physiology and Occupational Physiology, 54(6), 566–573. https://doi.org/10.1007/bf00943342
Brinckmann, P., Johannleweling, N., Hilweg, D., & Biggemann, M. (1987). Fatigue fracture of human lumbar vertebrae. Clinical Biomechanics, 2(2), 94–96. https://doi.org/10.1016/0268-0033(87)90134-3
Cesar, G. M., Tomasevicz, C. L., & Burnfield, J. M. (2016). Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury. Sports Biomechanics, 15(4). https://doi.org/10.1080/14763141.2016.1174286
Chaffin, D. B., & Andersson, G. B. J. (1991). Occupational biomechanics. Second edition (Vol. 2).
Eie, N. (1966). Load capacity of the low back. Journal of the Oslo City Hospitals, 16(4), 73–98.
Gallagher, S., & Marras, W. S. (2012). Tolerance of the lumbar spine to shear: A review and recommended exposure limits. Clinical Biomechanics, 27(10), 973–978. https://doi.org/10.1016/j.clinbiomech.2012.08.009
Genaidy, A. M., Waly, S. M., Khalil, T. M., & Hidalgo, J. (1993). Spinal compression tolerance limits for the design of manual material handling operations in the workplace. Ergonomics, 36(4), 415–434. https://doi.org/10.1080/00140139308967899
Griffin, L. Y., Agel, J., Albohm, M. J., Arendt, E. A., Dick, R. W., Garrett, W. E., Garrick, J. G., Hewett, T. E., Huston, L., Ireland, M. L., Johnson, R. J., Kibler, W. B., Lephart, S., Lewis, J. L., Lindenfeld, T. N., Mandelbaum, B. R., Marchak, P., Teitz, C. C., & Wojtys, E. M. (2000). Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. The Journal of the American Academy of Orthopaedic Surgeons, 8, 141–150. https://doi.org/10.5435/00124635-200005000-00001
Hansson, T. H., Keller, T. S., & Spengler, D. M. (1987). Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. Journal of Orthopaedic Research, 5(4), 479–487. https://doi.org/10.1002/jor.1100050403
Hasson, C. J., Dugan, E. L., Doyle, T. L. A., Humphries, B., & Newton, R. U. (2004). Neuromechanical strategies employed to increase jump height during the initiation of the squat jump. Journal of Electromyography and Kinesiology, 14(4), 515–521. https://doi.org/10.1016/j.jelekin.2003.12.004
Herrington, L., & Munro, A. (2010). Drop jump landing knee valgus angle; normative data in a physically active population. Physical Therapy in Sport, 11(2), 56–59. https://doi.org/10.1016/j.ptsp.2009.11.004
Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., Mclean, S. G., van den Borget, A. J., Paterno, M. V., & Succop, P. (2005). Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes A Prospective Study Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Ant. American Journal of Sports Medicine, 33(4), 492–501. https://doi.org/10.1177/0363546504269591
Hutton, W. C., & Adams, M. A. (1982). Can the lumbar spine be crushed in heavy lifting? Spine, 7(6), 586–590. https://doi.org/10.1097/00007632-198211000-00012
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012
Kumar, S. (1996). Spinal compression at peak isometric and isokinetic exertions in simulated lifting in symmetric and asymmetric planes. Clinical Biomechanics, 11(5), 281–289. https://doi.org/10.1016/0268-0033(96)00015-0
Kuzmits, F. E., & Adams, A. J. (2008). The NFL combine: does it predict performance in the National Football League? Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 22(6), 1721–1727. https://doi.org/10.1519/jsc.0b013e318185f09d
Lees, A., & Fahmi, E. (1994). Optimal drop heights for plyometric training. Ergonomics, 37(1), 141–148. https://doi.org/10.1080/00140139408963632
Lees, Adrian, Vanrenterghem, J., & Clercq, D. D. (2004). Understanding how an arm swing enhances performance in the vertical jump. Journal of Biomechanics, 37(12), 1929–1940. https://doi.org/10.1016/j.jbiomech.2004.02.021
Lephart, S. M., Perrin, D. H., Fu, F. H., & Minger, K. (1991). Functional performance tests for the anterior cruciate ligament insufficient athlete. Journal of Athletic Training, 26, 44–50.
Mackala, K., Stodolka, J., Siemienski, A., & Coh, M. (2013). Biomechanical analysis of squat jump and countermovement jump from varying starting positions. Journal of Strength and Conditioning Research, 27(10), 2650–2661. https://doi.org/10.1519/jsc.0b013e31828909ec
McGill, S. M., & Norman, R. W. (1987). Reassessment of the role of intra-abdominal pressure in spinal compression. Ergonomics, 30(11), 1565–1588. https://doi.org/10.1080/00140138708966048
McGill, Stuart M., Andersen, J. T., & Horne, A. D. (2012). Predicting performance and injury resilience from movement quality and fitness scores in a basketball team over 2 years. Journal of Strength and Conditioning Research, 26(7), 1731–1739. https://doi.org/10.1519/jsc.0b013e3182576a76
Myer, G. D., Ford, K. R., Di Stasi, S. L., Foss, K. D. B., Micheli, L. J., & Hewett, T. E. (2015). High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? British Journal of Sports Medicine, 49(2), 118–122. https://doi.org/10.1136/bjsports-2013-092536
NIOSH. (1981). Work practices guide for manual lifting. US Department of Health and Human Services, Technical Report Number: 81-122.
Nuzzo, J. L., & McBride, J. M. (2013). The Effect of Loading and Unloading on Muscle Activity During the Jump Squat. Journal of Strength and Conditioning Research, 27(7), 1758–1764. https://doi.org/10.1519/jsc.0b013e318291b8b2
Osvalder, A. L., Neumann, P., Lövsund, P., & Nordwall, A. (1993). A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. Journal of Biomechanics, 26(10), 1227–1236. https://doi.org/10.1016/0021-9290(93)90070-u
Pollard, C. D., Sigward, S. M., & Powers, C. M. (2010). Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clinical Biomechanics, 25(2), 142–146. https://doi.org/10.1016/j.clinbiomech.2009.10.005
Rodano, R. (1996). Gender Differences in Joint Momentand Power Measurements During Vertical Jump Exercises. ISBS-Conference.
Swartz, E. E., Decoster, L. C., Russell, P. J., & Croce, R. V. (2005). Effects of Developmental Stage and Sex on Lower Extremity Kinematics and Vertical Ground Reaction Forces During Landing. Journal of Athletic Training, 40(1), 9–14.
Tomasevicz, C. L., Hasenkamp, R., Ransone, J. W., & Jones, D. (2019). Optimal depth jump height quantified as percentage of athlete stature. Journal of Human Sport and Exercise, 15(3). https://doi.org/10.14198/jhse.2020.153.17
Van Lunen, B. L., & Kramer, L. C. (2010). Understanding and Preventing Noncontact ACL Injuries. In Athletic Training & Sports Health Care (Vol. 2, Issue 1, pp. 43–44). https://doi.org/10.3928/19425864-20101222-08
Waters, T. R., Putz-Anderson, V., Garg, A., & Fine, L. J. (1993). Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749–776. https://doi.org/10.1080/00140139308967940
Yoganandan, N., Ray, G., Pintar, F. A., Myklebust, J. B., & Sances, A. (1989). Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. Journal of Biomechanics, 22(2), 135–142. https://doi.org/10.1016/0021-9290(89)90036-5
Yule, S. (2007). The Back Squat. Journal of UKSCA, 8, 20–23.
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Journal of Human Sport and Exercise
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.