Effect of exercise in the recovery process after the inflammation process caused by coronavirus
DOI:
https://doi.org/10.14198/jhse.2023.181.08Keywords:
Coronavirus, COVID-19, Cytokines, Exercise, Immunomodulators, InflammationAbstract
Coronavirus (SARS-CoV-2 - COVID-19) disease causes severe acute respiratory syndrome. During infection, activation of macrophages and pro-inflammatory granulocytes produces cell damage, inducing lung inflammation that leads to the characteristic symptoms of fever, cough, fibrosis, and high increase in pro-inflammatory cytokine levels. In general, during the inflammatory process and infection by coronavirus, cytokines are elevated, particularly IL-1, 6 and 12, TNF-α, and TGF-β. In addition, patients with complications and lethal prognosis present increased serum levels of IF-I and γ compared to healthy individuals or patients with moderate symptoms. On the other hand, it is known that physical activity favours an adaptation of the immune system function. In this context, we suggest that appropriate exercise programs could improve recovery of people who have suffered from COVID-19 disease, improving the quality of life and reinforcing the protection against future infections. The immunomodulatory properties of exercise and physical activity could act as prevention tools for different chronic diseases in healthy individuals and complement therapeutic tools in sick patients. Nevertheless, exercise must be adequate both in time and intensity, taking into account the patient's clinical situation as well as their previous physical activity.
Downloads
References
Adams, E. R., Ainsworth, M., Anand, R., Andersson, M. I., Auckland, K., Baillie, J. K., … Whitehouse, J. (2020). Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. MedRxiv. https://doi.org/10.1101/2020.04.15.20066407
Al-Shaibani, A. (2020). Epidemiology of the domestic and repatriation (Covid-19) Infection in Al Najaf province, Iraq. Journal of the Faculty of Medicine of Bagdad, 62, 13-19. https://doi.org/10.32007/jfacmedbagdad.621.21738
Algaissi, A., Alfaleh, M. A., Hala, S., Abujamel, T. S., Alamri, S. S., Almahboud, S. A., … Hashem, A. M. (2020). SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients. Scientific Reports, 10, 16561. https://doi.org/10.1038/s41598-020-73491-5
Allen, J., Sun, Y., & Woods, J. A. (2015). Exercise and the regulation of inflammatory responses. Progress in Molecular Biology and Translational Science, 135, 337-354. https://doi.org/10.1016/bs.pmbts.2015.07.003
Amanat, F., & Krammer, F. (2020). SARS-CoV-2 vaccines: Status Report. Immunity, 52, 583-589. https://doi.org/10.1016/j.immuni.2020.03.007
Baumann, H., & Gauldie J. (1994). The acute phase response. Immunology Today, 15, 74-80. https://doi.org/10.1016/0167-5699(94)90137-6
Billiau, A. (1996). Interferon-γ: biology and role in pathogenesis. Advances in Immunology, 62, 61-130. https://doi.org/10.1016/S0065-2776(08)60428-9
Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens, 6, e1000863. https://doi.org/10.1371/journal.ppat.1000863
Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., … Thiel, A. (2020). Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. Nature, 587, 270-274. https://doi.org/10.1038/s41586-020-2598-9
Brawner, C. A, Ehrman, J. K., Bole, S., Kerrigan, D. J., Parikh, S. S., Lewis, B. K., … Keteyian, S. J. (2019). Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clinic Proceedings, 96, 32-39. https://doi.org/10.1016/j.mayocp.2020.10.003
Chang, Y. J., Kim, H. Y., Albacker, L. A., Baumgarth, N., McKenzie, A. N., Smith, D. E., … Umetsu, D. T. (2011). Innate lymphoid cells mediateinfluenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunology, 12, 631-638. https://doi.org/10.1038/ni.2045
Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K., & Perlman, S. (2014). Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. Journal of Virology, 88, 11034-11044. https://doi.org/10.1128/JVI.01505-14
Channappanavar R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host and Microbe, 19, 181-193. https://doi.org/10.1016/j.chom.2016.01.007
Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology, 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
Cordova, A., Martin, J. F., Reyes, E., & Alvarez-Mon, M. (2004). Protection against muscle damage in competitive sports players: the effect of the immunomodulator AM3. Journal of Sports Sciences, 22, 827-833. https://doi.org/10.1080/02640410410001716742
Cordova, A., Monserrat, J., Villa, G., Reyes, E., & Soto, M. A. (2006). Effects of AM3 (Inmunoferon) on increased serum concentrations of interleukin-6 and tumour necrosis factor receptors I and II in cyclists. Journal of Sports Sciences, 24, 565-573. https://doi.org/10.1080/02640410500141158
Córdova A., Martorell M., Sureda A., Tur J. A., Pons A. Changes in Circulating Cytokines and Markers of Muscle Damage in Elite Cyclists during a Multi-stage Competition Clinical Physiology Function Imaging. 2015;35:351-358. https://doi.org/10.1111/cpf.12170
Cordova, A., Sureda, A., Pons, A., & Alvarez-Mon, M. (2015). Modulation of TNF-alpha, TNF-alpha receptors and IL-6 after treatment with AM3 in professional cyclists. Journal of Sports Medicine and Physical Fitness, 55, 345-351.
Deng X., & Baker, S. C. (2018). An "old" protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defences. Virology, 517, 157-163. https://doi.org/10.1016/j.virol.2017.12.024
Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., … Chen, Y. (2020). Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. https://doi.org/10.3389/fimmu.2020.00827
Germolec, D. R., Frawley, R. P., & Evans, E. (2010). Markers of inflammation. Methods in Molecular Biology, 598, 53-73. https://doi.org/10.1007/978-1-60761-401-2_5
Giamarellos-Bourboulis, E. J., Netea, M. G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., … Koutsoukou, A. (2020). Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host and Microbe, 27, 992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009
Gleeson, M., Pyne, D. B., Austin, J. P., Lynn Francis, J., Clancy, R. L., McDonald, W. A., & Fricker, P. A. (2002). Epstein_Barr virus reactivation and upper-respiratory illness in elite swimmers. Medicine and Science in Sports and Exercise, 34, 411-417. https://doi.org/10.1097/00005768-200203000-00005
Green, S. J., Scheller, L. F., Marletta, M. A., Seguin, M. C., Klotz, F. W., Slayter, M., … Nacy, C. A. (1994). Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunology Letters, 43, 87-94. https://doi.org/10.1016/0165-2478(94)00158-8
Guo, C., Li, B., Ma, H., Wang, X., Cai, P., Yu, Q., … Qu, K. (2020). Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. BioRxiv. https://doi.org/10.1101/2020.04.08.029769
Hackbart, M., Deng, X., & Baker, S. C. (2020). Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proceedings of the National Academy of Sciences of the United States of America, 117, 8094-8103. https://doi.org/10.1073/pnas.1921485117
Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Pere, H., … Terrier, B. (2020). Impaired type I interferon activity and exacerbated inflammatory responses in severe Covid-19 patients. Science, 369, 718-724. https://doi.org/10.1126/science.abc6027
Hu, L., Chen, S., Fu, Y., Gao, Z., Long, H., Ren, H.-W., … Deng, Y. (2020). Risk factors associated with clinical outcomes in 323 coronavirus disease 2019 (COVID-19) hospitalized patients in Wuhan, China. Clinical Infectious Diseases, 71, 2089-2098. https://doi.org/10.1093/cid/ciaa539
Huang, A.T., Garcia-Carreras, B., Hitchings, M. D. T., Yang, B., Katzelnick, L., Rattigan, S. M., … Cummings, D. A. T. (2020). A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. MedRxiv. https://doi.org/10.1101/2020.04.14.20065771
Ju, B., Zhang, Q., Ge, X., Wang, R., Sun, J., Ge, X., … Song, S. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584, 115-119. https://doi.org/10.1038/s41586-020-2380-z
Kawanishi, N., Mizokami, T., Niihara, H., Yada, K., & Suzuki, K. (2016). Neutrophil depletion attenuates muscle injury after exhaustive exercise. Medicine and Science in Sports and Exercise, 48, 1917-1924. https://doi.org/10.1249/MSS.0000000000000980
Kammuller, M. E. (1995). Recombinant human interleukin-6: safety issues of a pleiotropic growth factor. Toxicology, 105, 91-107. https://doi.org/10.1016/0300-483X(95)03128-3
Kang, S., Brown, H. M., & Hwang, S. (2018). Direct antiviral mechanisms of interferon-gamma. Immune Network, 18, e33. https://doi.org/10.4110/in.2018.18.e33
Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., … Snijder, E.J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biology, 6, e226. https://doi.org/10.1371/journal.pbio.0060226
Krüger, K., Mooren, F.-C.., & Pilat, C. (2016). The immunomodulatory effects of physical activity. Current Pharmaceutical Design, 22, 3730-3748. https://doi.org/10.2174/1381612822666160322145107
Lee, A. J., & Ashkar, A. A. (2018). The dual nature of type I and type II interferons. Frontiers in Immunology, 9, 2061. https://doi.org/10.3389/fimmu.2018.02061
Lee, D. W., Gardner, R., Porter, D. L. Louis, C. U., Ahmed, N., Jensen, M, … Mackall, C. L., (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124, 188-195. https://doi.org/10.1182/blood-2014-05-552729
Li, C. K.-F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., … Xu, X.-N. (2008). T cell responses to whole SARS coronavirus in humans. Journal of Immunology, 181, 5490-5500. https://doi.org/10.4049/jimmunol.181.8.5490
Liu, W., Fontanet, A., Zhang, P. H., Zhan, L., Xin, Z. T., Baril, L., … Cao, W.C. (2006). Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. Journal of Infectious Diseases, 193, 792-795. https://doi.org/10.1086/500469
Liu, Q., Zhou, Y. H., & Yang, Z. Q. (2016). The cytokine storm of severe influenza and development of immunomodulatory therapy. Cellular and Molecular Immunology, 13, 3-10. https://doi.org/10.1038/cmi.2015.74
Lowder, T., Padgett, D. A., & Woods J. A. (2006). Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exercise Immunology Review, 12, 97-111.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
Mahdi, B.M. (2020). COVID-19 type III hypersensitivity reaction. Medical Hypotheses, 140, 109763. https://doi.org/10.1016/j.mehy.2020.109763
McNab, F., Mayer-Barber, K., Sher, A., Wack, A., & O'Garra, A. (2015). Type I interferons in infectious disease. Nature Reviews. Immunology, 15, 87-103. https://doi.org/10.1038/nri3787
Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH Across Speciality Collaboration, UK. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395, 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews. Immunology, 20, 355-362. https://doi.org/10.1038/s41577-020-0331-4
Ng, O.-W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., … Tan,Y.-J. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 34, 2008-2014. https://doi.org/10.1016/j.vaccine.2016.02.063
Nie, S., Zhao, X., Zhao, K., Zhang, Z. [Zhaohui], Zhang, Z. [Zhentao], & Zhang, Z. [Zhan] (2020). Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a retrospective study. MedRxiv. https://doi.org/10.1101/2020.03.24.20042283
Nieman, D. C. (1997). Immune response to heavy exertion. Journal of Applied Physiology. 82, 1385-1394. https://doi.org/10.1152/jappl.1997.82.5.1385
Nieman, D. C., & Nehlsen-Cannarella, S. L. (1992). Exercise and infection. In R. R. Watson & M. Eisinger (Eds.), Exercise and disease (pp. 121-148). Boca Raton, Florida, USA: CRC Press. https://doi.org/10.1201/9781003068853-8
Okba, N. M. A., Müller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman,V. M., … Haagmans, B. L. (2020). Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases, 26, 1478-1488. https://doi.org/10.3201/eid2607.200841
Ozemek, C., Lavie, C. J., & Rognmo, Ø. (2019). Global physical activity levels-Need for intervention. Progress in Cardiovascular Disease, 62, 102-107. https://doi.org/10.1016/j.pcad.2019.02.004
Pathan, N., Hemingway, C. A., Alizadeh, A. A., Stephens, A. C., Boldrick, J. C., Oragui, E. E., … Levin, M. (2004). Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet, 363, 203-209. https://doi.org/10.1016/S0140-6736(03)15326-3
Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: regulation, integration, and adaptation. Physiological Reviews, 80, 1055-1081. https://doi.org/10.1152/physrev.2000.80.3.1055
Polidoro, R. B., Hagan, R. S., de Santis Santiago, R., & Schmidt, N. W. (2020). Overview: Systemic inflammatory response derived from lung injury caused by SARS-CoV-2 infection explains severe outcomes in COVID-19. Frontiers in Immunology, 11, 1626. https://doi.org/10.3389/fimmu.2020.01626
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., … Tian, D.-S. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases, 71, 762-768. https://doi.org/10.1093/cid/ciaa248
Rehwinkel, J., & Gack, M. U. (2020). RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews. Immunology, 20, 537-551. https://doi.org/10.1038/s41577-020-0288-3
Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433
Ruggiero, V., Tavernier, J., Fiers, W., & Baglioni, C. (1986). Induction of the synthesis of tumor necrosis factor receptors by interferon-gamma. Journal of Immunology, 136, 2445-2450.
Sarzi-Puttini, P., Giorgi, V., Sirotti, S., Marotto, D., Ardizzone, S., Rizzardini, G, … Galli, M. (2020). COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clinical and Experimental Rheumatology, 38, 337-342. https://doi.org/10.1016/j.autrev.2020.102574
Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D.A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75, 163-189. https://doi.org/10.1189/jlb.0603252
Shaw, D. M., Merien, F., Braakhuis, A., & Dulson, D. (2018). T-cells and their cytokine production: the anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine, 104, 136-142. https://doi.org/10.1016/j.cyto.2017.10.001
Shephard, R. J., Verde, T. J., Thomas, S. G., & Shek, P. (1991). Physical activity and the immune system. Canadian Journal of Sport Sciences, 16, 163-185.
Shiow, L. R., Rosen, D. B., Brdicková, N., Xu, Y., An, J., Lanier, L. L., … Matloubian, M. (2006). CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 440, 540-544. https://doi.org/10.1038/nature04606
Song, C.-Y., Xu, J., He, J.-Q., & Lu, Y.-Q. (2020). COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients. MedRxiv. https://doi.org/10.1101/2020.03.05.20031906
Sureda, A., Ferrer, M. D., Tauler, P., Maestre, I., Aguiló, A., Cordova, A, … Pons, A. (2007). Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radical Research, 41, 874-883. https://doi.org/10.1080/10715760701416459
Surkina, I., Danilenko, S., Dudov, N., Gotovtseva, E. P., Koptelov, O. V., Kostina, L. V., … Vorobiev, A. A. The role of the immune system in processes of adaptation to stress in sportsmen. Clinical Science, 87, 22. https://doi.org/10.1042/cs087s022
Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., & Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise Immunology Review, 8, 6-48.
Tanaka, T., Narazaki, M., & Kishimoto, T. (2016). Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 8, 959-970. https://doi.org/10.2217/imt-2016-0020
Taylor, A., Foo, S.-S., Bruzzone, R., Dinh, L. V., King, N. J. C., & Mahalingam, S. (2015). Fc receptors in antibody-dependent enhancement of viral infections. Immunological Reviews, 268, 340-364. https://doi.org/10.1111/imr.12367
Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E.,… Kedzierska, K. (2020) Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine, 26, 453-455. https://doi.org/10.1038/s41591-020-0819-2
To, K. K.-W., Tsang, O. T.-Y., Leung, W.-S., Tam, A. R., Wu, T.-C., Lung, D. C., … Yuen, K.-Y. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet. Infectious Diseases, 20, 565-574. https://doi.org/10.1016/S1473-3099(20)30196-1
Velikova, T. V., Kotsev, S. V., Georgiev, D. S., & Batselova, H. M. (2020). Immunological aspects of COVID-19: What we do know? World Journal of Biological Chemistry, 11, 14-29. https://doi.org/10.4331/wjbc.v11.i2.14
Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., … Spits, H. (2018). Innate Lymphoid Cells: 10 years on. Cell, 174, 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017
Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., … Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise Immunology Review, 17, 6-63.
Wang, D., Hu, B., Hu, C., Zhu, F., Lui, X., Zhang, J., …Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323, 1061-1069. https://doi.org/10.1001/jama.2020.1585
Wang, T., Zhang, X., & Li, J. J. (2002). The role of NF-κB in the regulation of cell stress responses. International Immunopharmacology, 2, 1509-1520. https://doi.org/10.1016/S1567-5769(02)00058-9
Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martinez-Colon, G. J., McKechnie, J. L., … Blish, C. A. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID19. Nature Medicine, 26, 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
Zhang, J., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45, 27-37. https://doi.org/10.1097/AIA.0b013e318034194e
Zhang, Y., Li, J., Zhan, Y., Wu, L., Yu, X., Zhang, W., … Lou, J. (2004). Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infection and Immunity, 72, 4410-4415. https://doi.org/10.1128/IAI.72.8.4410-4415.2004
Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W, … Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214-217. https://doi.org/10.1016/j.ijid.2020.01.050
Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., … Tian, Z. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology, 17, 533-535. https://doi.org/10.1038/s41423-020-0402-2
Zheng, M., & Song, L. (2020). Novel antibody epitopes dominate the antigenicityof spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular and Molecular Immunology, 17, 536-538. https://doi.org/10.1038/s41423-020-0385-z
Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., … Wei, H. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review, 7, 998-1002. https://doi.org/10.1093/nsr/nwaa041
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.