Concurrent validity of VmaxPro, Kinovea, and Speedograph for the assessment of peak barbell velocity during the bench press

A comparison of technological approaches and historical evolutions

Authors

  • Ingo Sandau Institute for Apllied Training Science, Germany https://orcid.org/0000-0003-2552-4786
  • Arne Ritterbusch University of Leipzig, Germany
  • Adrian Schelenz University of Leipzig, Germany
  • Maren Witt University of Leipzig, Germany

DOI:

https://doi.org/10.14198/jhse.2023.183.09

Keywords:

Biomechanics, Video analysis, IMU, Linear velocity transducer, Calibration

Abstract

Measurement of barbell velocity is a simple and effective way to control strength training. To assess the concurrent validity of different technological approaches measuring barbell velocity, video-analysis (Kinovea), linear velocity transducer (Speedograph), and an inertial measurement unit (VmaxPro) were compared. Sixty-eight female and male sport science students lifted two repetitions in the bench press exercise at self-selected barbell loads. Peak vertical barbell velocity (Vmax) was parallel measured during the concentric phase of the lift using the aforementioned devices. Concordance correlation coefficient (CCC), Deming regression (DR) and Bland-Altman analysis (BA) were used to assess relative and absolute concurrent validity of Vmax measured with Kinovea, Speedograph, and VmaxPro. Results confirmed high concurrent validity of Speedograph and VmaxPro (CCC = 0.99, standard deviation of differences [SDD] = 0.04 m∙s-1) without detecting proportional or constant bias. In contrast, Vmax measured with Kinovea showed poor concurrent validity to Speedograph (CCC = 0.83) and VmaxPro (CCC = 0.81) with significant proportional and constant bias. Regression based re-calibration of Vmax from Kinovea resulted in an SDD = 0.09 m∙s-1 compared to Speedograph and an SDD = 0.08 m∙s-1 compared to VmaxPro. Among the three tested devices, Vmax assessed using Kinovea showed poor concurrent validity. Furthermore, as Kinovea showed proportional bias compared to Speedograph and VmaxPro, application-specific re-calibration of Kinovea should be applied when barbell velocity data is compared to Speedograph and VmaxPro.

Downloads

Download data is not yet available.

References

Bardella, P., Carrasquilla García, I., Pozzo, M., Tous-Fajardo, J., Saez de Villareal, E., & Suarez-Arrones, L. (2017). Optimal sampling frequency in recording of resistance training exercises. Sports Biomech, 16(1), 102-114. https://doi.org/10.1080/14763141.2016.1205652

Carzoli, J. P., Sousa, C. A., Helms, E. R., & Zourdos, M. C. (2022, Jan). Agreement Between Kinovea Video Analysis and The Open Barbell System for Resistance Training Movement Outcomes. J Hum Kinet, 81, 27-39. https://doi.org/10.2478/hukin-2022-0003

Clemente, F. M., Akyildiz, Z., Pino-Ortega, J., & Rico-González, M. (2021, Apr 3). Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors (Basel), 21(7). https://doi.org/10.3390/s21072511

Harris, N. K., Cronin, J., Taylor, K.-L., Jidovtseff, B., & Sheppard, J. (2010). Understanding position transducer technology for strength and conditioning practitioners. Strength and Conditioning Journal, 32(4), 66-79. https://doi.org/10.1519/SSC.0b013e3181eb341b

Hornsby, W. G., Gleason, B. H., DeLong, M., & Stone, M. H. (2022, Sep 8). "Are You Doing Any Sport Science?" A Brief Editorial. J Funct Morphol Kinesiol, 7(3). https://doi.org/10.3390/jfmk7030069

Hughes, L. J., Banyard, H. G., Dempsey, A. R., Peiffer, J. J., & Scott, B. R. (2019, Mar). Using load-velocity relationships to quantify training-induced fatigue. J Strength Cond Res, 33(3), 762-773. https://doi.org/10.1519/jsc.0000000000003007

Hughes, L. J., Banyard, H. G., Dempsey, A. R., & Scott, B. R. (2019, Sep). Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: A comparison of the different methods. Journal of Strength and Conditioning Research, 33(9), 2409-2419. https://doi.org/10.1519/jsc.0000000000002550

Jimenez-Olmedo, J. M., Penichet-Tomas, A., Villalon-Gasch, L., & Pueo, B. (2021). Validity and reliability of smartphone high-speed camera and Kinovea for velocity-based training measurement. J Hum Sport Excerc, 16(4), 878-888. https://doi.org/10.14198/jhse.2021.164.11

Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: consequences for strength training control and programming. PeerJ, 9, e10942. https://doi.org/10.7717/peerj.10942

Jukic, I., García-Ramos, A., Malecek, J., Omcirk, D., & Tufano, J. J. (2020, Apr 13). Validity of Load-Velocity Relationship to Predict 1 Repetition Maximum During Deadlifts Performed With and Without Lifting Straps: The Accuracy of Six Prediction Models. J Strength Cond Res. https://doi.org/10.1519/jsc.0000000000003596

Koshida, S., Urabe, Y., Miyashita, K., Iwai, K., & Kagimori, A. (2008, Sep). Muscular outputs during dynamic bench press under stable versus unstable conditions. J Strength Cond Res, 22(5), 1584-1588. https://doi.org/10.1519/JSC.0b013e31817b03a1

Martinopoulou, K., Tsoukos, A., Donti, O., Katsikas, C., Terzis, G., & Bogdanis, G. C. (2022). Comparison of movement velocity and force-velocity parameters using a free video analysis software and a linear position transducer during unilateral and bilateral ballistic leg press. Biomed Hum Kinet(14), 25-32. https://doi.org/10.2478/bhk-2022-0004

McBride, G. B. (2005). A proposal for strength-of-agreement criteria for Lin's concordance correlation coefficient [Client Report HAM2005-062]. NIWA

Montenij, L. J., Buhre, W. F., Jansen, J. R., Kruitwagen, C. L., & de Waal, E. E. (2016, Jun). Methodology of method comparison studies evaluating the validity of cardiac output monitors: a stepwise approach and checklist. Br J Anaesth, 116(6), 750-758. https://doi.org/10.1093/bja/aew094

Moreno-Villanueva, A., Pino-Ortega, J., & Rico-González, M. (2021, Nov 2). Validity and reliability of linear position transducers and linear velocity transducers: a systematic review. Sports Biomech, 1-30. https://doi.org/10.1080/14763141.2021.1988136

Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017, Jul). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678

Payne, R. B. (1997). Method comparison: Evaluation of least squares, Deming and Passing/Bablok regression procedures using computer simulation. Ann Clin Biochem, 34 (Pt 3), 319-320. https://doi.org/10.1177/000456329703400317

Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019, May). Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J Strength Cond Res, 33(5), 1258-1265. https://doi.org/10.1519/jsc.0000000000003118

Richter, G. (1973). Ein Trainergerät zur Objektivierung der sportspezifischen Schnellkraftfähigkeit und zur Trainingssteuerung im Gewichtheben. Theorie und Praxis Leistungssport, 11(3), 241-263.

Richter, G. (1974). Meßwertgewinnung und -verdichtung im Forschungsvorhaben Gewichtheben. Theorie und Praxis Leistungssport, 12(1), 53-65.

Rum, L., Sciarra, T., Balletti, N., Lazich, A., & Bergamini, E. (2022, Dec 16). Validation of an Automatic Inertial Sensor-Based Methodology for Detailed Barbell Velocity Monitoring during Maximal Paralympic Bench Press. Sensors (Basel), 22(24). https://doi.org/10.3390/s22249904

Sañudo, B., Rueda, D., Pozo-Cruz, B. D., de Hoyo, M., & Carrasco, L. (2016, Oct). Validation of a Video Analysis Software Package for Quantifying Movement Velocity in Resistance Exercises. J Strength Cond Res, 30(10), 2934-2941. https://doi.org/10.1519/jsc.0000000000000563

Sato, K., Smith, S. L., & Sands, W. A. (2009). Validation of an accelerometer for measuring sport performance. J Strength Cond Res, 23(1), 342-347. https://doi.org/10.1519/JSC.0b013e3181876a01

Suchomel, T. J., Nimphius, S., Bellon, C. R., Hornsby, W. G., & Stone, M. H. (2021, Oct). Training for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. Sports Med, 51(10), 2051-2066. https://doi.org/10.1007/s40279-021-01488-9

Ungerer, J. P. J., & Pretorius, C. J. (2018). Method comparison - a practical approach based on error identification. Clin Chem Lab Med, 56(1), 1-4. https://doi.org/doi.org/10.1515/cclm-2017-0842

Wang, L., Hu, W., & Tan, T. (2003). Recent developments in human motion analysis. Pattern Recognition, 36(3), 585-601. https://doi.org/10.1016/S0031-3203(02)00100-0

Weakley, J., Mann, B., Banyard, H. G., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength and Conditioning Journal, 43(2), 31-49. https://doi.org/10.1519/SSC.0000000000000560

Concurrent validity of VmaxPro, Kinovea, and Speedograph for the assessment of peak barbell velocity during the bench press: A comparison of technological approaches and historical evolutions

Downloads

Statistics

Statistics RUA

Published

2023-04-18 — Updated on 2023-07-04

Versions

How to Cite

Sandau, I., Ritterbusch, A., Schelenz, A., & Witt, M. (2023). Concurrent validity of VmaxPro, Kinovea, and Speedograph for the assessment of peak barbell velocity during the bench press: A comparison of technological approaches and historical evolutions. Journal of Human Sport and Exercise, 18(3), 612–621. https://doi.org/10.14198/jhse.2023.183.09 (Original work published April 18, 2023)

Issue

Section

Biomechanics