Anthropometric profile, cardiorespiratory capacity and pulmonary function in an elite Chilean triathlete

A case study


  • Rodrigo Yáñez-Sepúlveda University Andres Bello, Chile
  • Guillermo Cortés-Roco University Viña del Mar, Chile
  • Tomás Rivera-Kofler University Viña del Mar, Chile
  • Eduardo Báez-San Martín University of Playa Ancha, Chile
  • Marcelo Tuesta University Andres Bello, Chile



Performance analysis of sport, Body composition, Somatotype, Triathlon


The objective of this study was to describe the anthropometric profile, cardiorespiratory capacity and lung function in a high-performance Chilean triathlete ranked first in the national ranking. For this, the body composition profile proposed by Kerr, the somatotype according to Carter and Heath, lung volumes with spirometry according to the criteria of the ATS/ERS, the maximum dynamic inspiratory strength (S-index), the maximum inspiratory flow (FMI) and the maximum oxygen consumption (VO2max) with a treadmill cardiopulmonary exercise test were evaluated. The results showed 50.30% (30.28 kg) of muscle tissue, 21.46% (12.92 kg) of adipose tissue, a musculoskeletal index of 4.4, and a balanced mesomorphic somatotype (ENDO 2.0 – MESO 5.1 – ECTO 2.3). The VO2max was 77 ml/kg/min, the S-Index was 189 cmH2O, the FIM was 10.1 l/sec, the FEV1 was 4.08 l, maximum voluntary ventilation (MVV) was 153 l and a maximum expiratory flow (FEM) of 584 l. In conclusion, the triathlete has a high level of muscle tissue and optimal percentage of subcutaneous body fat with a balanced physical form towards the muscle component. An outstanding cardiorespiratory capacity, inspiratory strength and lung function represents a great adaptation to the endurance tests that make up triathlon, especially swimming on inspiratory strength. Morphofunctional changes associated with the high-performance sports discipline are observed.


Download data is not yet available.


Baldari, C., Videira, M., Madeira, F., Sergio, J., & Guidetti, L. (2005). Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes. The Journal of sports medicine and physical fitness, 45(4), 460-466.

Borrego-Sánchez, A., Vinolo-Gil, M. J., de-la-Casa-Almeida, M., Rodríguez-Huguet, M., Casuso-Holgado, M. J., & Martín-Valero, R. (2021). Effects of Training on Cardiorespiratory Fitness in Triathletes: A Systematic Review and Meta-Analysis. International journal of environmental research and public health, 18(24), 13332.

Boussana A, Galy O, Le Gallais D, Hue O. The effect of an Olympic distance triathlon on the respiratory muscle strength and endurance in triathletes. J Exerc Rehabil. 2020 Aug 25;16(4):356-362. https://doi:10.12965/jer.2040518.259

Canda, A.; Castiblanco, L.; Toro, A.; Amestoy, J. & Higueras, S. Morphological characteristics of the triathlete according to sex, category and competitive level. Apunt. Med. L'esport., 49:75-84, 2014.

Carrion, B. M., Wells, A., Mayhew, J. L., & Koch, A. J. (2019). Concordance Among Bioelectrical Impedance Analysis Measures of Percent Body Fat in Athletic Young Adults. International journal of exercise science, 12(4), 324-331.

Carter, J. & Heath, B. 1990. Somatotyping. Development and Applications. Cambridge, Cambridge University Press.

Cejuela, R., & Sellés-Pérez, S. (2022). Road to Tokyo 2020 Olympic Games: Training Characteristics of a World Class Male Triathlete. Frontiers in physiology, 13, 835705.

Cuba-Dorado, A., Álvarez-Yates, T., & García-García, O. (2022). Elite Triathlete Profiles in Draft-Legal Triathlons as a Basis for Talent Identification. International journal of environmental research and public health, 19(2), 881.

Etxebarria, N., Mujika, I., & Pyne, D. B. (2019). Training and Competition Readiness in Triathlon. Sports (Basel, Switzerland), 7(5), 101.

Graham, B. L., Steenbruggen, I., Miller, M. R., Barjaktarevic, I. Z., Cooper, B. G., Hall, G. L., Hallstrand, T. S., Kaminsky, D. A., McCarthy, K., McCormack, M. C., Oropez, C. E., Rosenfeld, M., Stanojevic, S., Swanney, M. P., & Thompson, B. R. (2019). Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. American journal of respiratory and critical care medicine, 200(8), e70-e88.

Guillén Rivas, Laura, Mielgo-Ayuso, Juan, Norte-Navarro, Aurora, Cejuela, Roberto, Cabañas, María Dolores, & Martínez-Sanz, José Miguel. (2015). Composición corporal y somatotipo en triatletas universitarios. Nutrición Hospitalaria, 32(2), 799-807.

Hartz, C. S., Sindorf, M. A. G., Lopes, C. R., Batista, J., & Moreno, M. A. (2018). Effect of Inspiratory Muscle Training on Performance of Handball Athletes. Journal of human kinetics, 63, 43-51.

Hue, O., Galy, O., & Le Gallais, D. (2006). Exercise intensity during repeated days of racing in professional triathletes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 31(3), 250-255.

Kandel, M., Baeyens, J. P., & Clarys, P. (2014). Somatotype, training and performance in Ironman athletes. European journal of sport science, 14(4), 301-308.

Kerr, D. (1988). An Anthropometric Method for Fractionation of Skin, Adipose, Bone, Muscle and Residual Masses in Males and Females Age 6 to 77 Years. M. Sc. Kinesiology Thessis. British Columbia, Simon Fraser University.

Knechtle, B., Baumann, B., Wirth, A., Knechtle, P., & Rosemann, T. (2010). Male ironman triathletes lose skeletal muscle mass. Asia Pacific journal of clinical nutrition, 19(1), 91-97.

Laurenson, N. M., Fulcher, K. Y., & Korkia, P. (1993). Physiological characteristics of elite and club level female triathletes during running. International journal of sports medicine, 14(8), 455-459.

Leake, C. N., & Carter, J. E. (1991). Comparison of body composition and somatotype of trained female triathletes. Journal of sports sciences, 9(2), 125-135.

Marfell, M.; Stewart, A. & Carter, J. (2006). International Standards for Anthropometric Assessment. Sydney, UNSW Press.

McConnell T. R. (1988). Practical considerations in the testing of VO2max in runners. Sports medicine (Auckland, N.Z.), 5(1), 57-68.

Mier, C. M., & Gibson, A. L. (2004). Evaluation of a treadmill test for predicting the aerobic capacity of firefighters. Occupational medicine (Oxford, England), 54(6), 373-378.

Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force (2005). Standardisation of spirometry. The European respiratory journal, 26(2), 319-338.

Ohya, T., Yamanaka, R., Hagiwara, M., Oriishi, M., & Suzuki, Y. (2016). The 400- and 800-m Track Running Induces Inspiratory Muscle Fatigue in Trained Female Middle-Distance Runners. Journal of strength and conditioning research, 30(5), 1433-1437.

Schabort, E. J., Killian, S. C., St Clair Gibson, A., Hawley, J. A., & Noakes, T. D. (2000). Prediction of triathlon race time from laboratory testing in national triathletes. Medicine and science in sports and exercise, 32(4), 844-849.

Sellés-Pérez, S., Fernández-Sáez, J., Férriz-Valero, A., Esteve-Lanao, J., & Cejuela, R. (2019). Changes in Triathletes' Performance and Body Composition During a Specific Training Period for a Half-Ironman Race. Journal of human kinetics, 67, 185-198.

Silva, P. E., de Carvalho, K. L., Frazão, M., Maldaner, V., Daniel, C. R., & Gomes-Neto, M. (2018). Assessment of Maximum Dynamic Inspiratory Pressure. Respiratory care, 63(10), 1231-1238.

Smith, J. R., Ade, C. J., Broxterman, R. M., Skutnik, B. C., Barstow, T. J., Wong, B. J., & Harms, C. A. (2014). Influence of exercise intensity on respiratory muscle fatigue and brachial artery blood flow during cycling exercise. European journal of applied physiology, 114(8), 1767-1777.

Millet, G. P., & Bentley, D. J. (2004). The physiological responses to running after cycling in elite junior and senior triathletes. International journal of sports medicine, 25(3), 191-197.

Stanojevic, S., Kaminsky, D. A., Miller, M. R., Thompson, B., Aliverti, A., Barjaktarevic, I., Cooper, B. G., Culver, B., Derom, E., Hall, G. L., Hallstrand, T. S., Leuppi, J. D., MacIntyre, N., McCormack, M., Rosenfeld, M., & Swenson, E. R. (2022). ERS/ATS technical standard on interpretive strategies for routine lung function tests. The European respiratory journal, 60(1), 2101499.

Volianitis, S., McConnell, A. K., & Jones, D. A. (2001). Assessment of maximum inspiratory pressure. Prior submaximal respiratory muscle activity ('warm-up') enhances maximum inspiratory activity and attenuates the learning effect of repeated measurement. Respiration; international review of thoracic diseases, 68(1), 22-27.

World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194.

Yañez-Sepulveda, R., Alvear-Ordenes, I., Tapia-Guajardo, A., Verdugo-Marchese, H., Cristi-Montero, C., & Tuesta, M. (2021). Inspiratory muscle training improves the swimming performance of competitive young male sprint swimmers. The Journal of sports medicine and physical fitness, 61(10), 1348-1353.

Zapico, A.G.; Benito, P.J.; Díaz, V.; Ruiz, J.R. & Calderón, F.J. Heart rate profile in highly trained triathletes. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte., 14 (56) 619-632, 2014.

Anthropometric profile, cardiorespiratory capacity and pulmonary function in an elite Chilean triathlete: A case study



Statistics RUA


2023-04-28 — Updated on 2023-05-02


How to Cite

Yáñez-Sepúlveda, R., Cortés-Roco, G., Rivera-Kofler, T., Báez-San Martín, E., & Tuesta, M. (2023). Anthropometric profile, cardiorespiratory capacity and pulmonary function in an elite Chilean triathlete: A case study. Journal of Human Sport and Exercise, 18(4), 775–785. (Original work published April 28, 2023)



Performance Analysis of Sport

Most read articles by the same author(s)