Effects of the exercise in the cerebral blood flow and metabolism: A review

Ángel Gabriel Lucas-Cuevas, Jose Ignacio Priego Quesada, Pedro Pérez-Soriano, Salvador Llana-Belloch

Abstract

In recent years it has been shown that cerebral blood flow is affected by intense exercise, what may even lead to a reduction in the cognitive capacity. This statement is contrary to the traditional belief that cerebral blood flood remains constant and unaltered even when exercise is performed. During physical exercise of moderate intensity, cerebral blood flow increases in the cerebral areas responsible for movement. Moreover, recent studies have observed that cerebral blood flow decreases during high-intensity exercise as a consequence of a local hyperventilation and vasoconstriction of the areas with lower cerebral activity. Traditionally, the glucose has been considered as the main and unique source of energy for the brain. However, new studies are suggesting that as the intensity of exercise increases, the glucose uptake decreases in favour of an increase in the lactate uptake. Finally, Hyperthermia may also play a major role in the cerebral regulation system, since it can provoke central fatigue as well as hypoglycaemia.


Keywords

Brain; Blood circulation; Oxygen consumption; Hyperthermia; Glucose uptake; Lactate

References

Ahlborg, G., & Wahren, J. (1972). Brain substrate utilization during prolonged exercise. Scand J Clin Lab Invest, 29(4), 397–402. https://doi.org/10.3109/00365517209080256

Ainslie, P. N., Barach, A., Murrell, C., Hamlin, M., Hellemans, J., & Ogoh, S. (2007). Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol, 292(2), H976–H983. https://doi.org/10.1152/ajpheart.00639.2006

Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232–243. https://doi.org/10.1038/nature09613

Bolduc, V., Thorin-Trescases, N., & Thorin, E. (2013). Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol, 305(5), H620–633. https://doi.org/10.1152/ajpheart.00624.2012

Brisswalter, J., Arcelin, R., Audiffren, M., & Delignieres, D. (1997). Influence of physical exercise on simple reaction time: Effect of physical fitness. Percept Mot Skills, 85(3), 1019–1027. https://doi.org/10.2466/pms.1997.85.3.1019

Brothers, R. M., Wingo, J. E., Hubing, K. A., & Crandall, C. G. (2009). The effects of reduced end-tidal carbon dioxide tension on cerebral blood flow during heat stress. J Physiol, 587(15), 3921–3927. https://doi.org/10.1113/jphysiol.2009.172023

Dalsgaard, M. K., Nybo, L., Cai, Y., & Secher, N. H. (2003). Cerebral metabolism is influenced by muscle ischaemia during exercise in humans. Exp Physiol, 88(2), 297–302. https://doi.org/10.1113/eph8802469

Dalsgaard, M. K., Quistorff, B., Danielsen, E. R., Selmer, C., Vogelsang, T., & Secher, N. H. (2004). A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol, 554(2), 571–578. https://doi.org/10.1113/jphysiol.2003.055053

Delp, M. D., Armstrong, R. B., Godfrey, D. A., Laughlin, M. H., Ross, C. D., & Wilkerson, M. K. (2001). Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J Physiol, 533(3), 849–859. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00849.x

Dempsey, J. A., Hanson, P. G., & Henderson, K. S. (1984). Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol, 355(1), 161–175. https://doi.org/10.1113/jphysiol.1984.sp015412

Dienel, G. A., Wang, R. Y., & Cruz, N. F. (2002). Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose–oxygen uptake ratio rises. J Cereb Blood Flow Metab, 22(12), 1490–1502. https://doi.org/10.1097/01.WCB.0000034363.37277.89

Fan, J.-L., Cotter, J. D., Lucas, R. A., Thomas, K., Wilson, L., & Ainslie, P. N. (2008). Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration. J Appl Physiol, 105(2), 433–445. https://doi.org/10.1152/japplphysiol.00010.2008

Faraci, F. M. (2011). The Robert M. Berne Distinguished Lecture: Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol, 300(5), H1566. https://doi.org/10.1152/ajpheart.01310.2010

Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A, 83(4), 1140–1144. https://doi.org/10.1073/pnas.83.4.1140

Hedlund, S., Nylin, G., & Regnström, O. (2008). The behaviour of the cerebral circulation during muscular exercise. Acta Physiol Scand, 54(3-4), 316–324. https://doi.org/10.1111/j.1748-1716.1962.tb02355.x

Ide, K., Horn, A., & Secher, N. H. (1999). Cerebral metabolic response to submaximal exercise. J Appl Physiol, 87(5), 1604–1608. https://doi.org/10.1152/jappl.1999.87.5.1604

Ide, K., Schmalbruch, I. K., Quistorff, B., Horn, A., & Secher, N. H. (2004). Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol, 522(1), 159–164. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00159.xm

Ide, K., & Secher, N. H. (2000). Cerebral blood flow and metabolism during exercise. Prog Neurobiol, 61(4), 397–414. https://doi.org/10.1016/S0301-0082(99)00057-X

Jorgensen, L. G., Perko, G., & Secher, N. H. (1992). Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol, 73(5), 1825–1830. https://doi.org/10.1152/jappl.1992.73.5.1825

Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Laangsjö, J., Oikonen, V., … Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. J Physiol, 568(1), 323–332. https://doi.org/10.1113/jphysiol.2005.091355

Kety, S. S., & Schmidt, C. F. (1948). The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest, 27(4), 476. https://doi.org/10.1172/JCI101994

King, P., Kong, M. F., Parkin, H., MacDonald, I. A., Barber, C., & Tattersall, R. B. (1998). Intravenous lactate prevents cerebral dysfunction during hypoglycaemia in insulin-dependent diabetes mellitus. Clin Sci (Lond), 94(2), 157. https://doi.org/10.1042/cs0940157

Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K. D., Dirnagl, U., Villringer, A., & Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab, 16(5), 817–826. https://doi.org/10.1097/00004647-199609000-00006

Larrabee, M. G. (1995). Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J Neurochem, 64(4), 1734–1741. https://doi.org/10.1046/j.1471-4159.1995.64041734.x

Lassen, N. A. (1959). Cerebral blood flow and oxygen consumption in man. Physiol Rev, 39(2), 183–238. https://doi.org/10.1152/physrev.1959.39.2.183

Lassen, N. A. (1974). Control of cerebral circulation in health and disease. Circulation Research, 34(6), 749–760. https://doi.org/10.1161/01.RES.34.6.749

Linkis, P., Jorgensen, L. G., Olesen, H. L., Madsen, P. L., Lassen, N. A., & Secher, N. H. (1995). Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol, 78(1), 12–16. https://doi.org/10.1152/jappl.1995.78.1.12

Madsen, P. L., Hasselbalch, S. G., Hagemann, L. P., Olsen, K. S., Bülow, J., Holm, S., … Lassen, N. A. (1995). Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J Cereb Blood Flow Metab, 15(3), 485–491. https://doi.org/10.1038/jcbfm.1995.60

Madsen, P. L., Sperling, B. K., Warming, T., Schmidt, J. F., Secher, N. H., Wildschiodtz, G., … Lassen, N. A. (1993). Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol, 74(1), 245–250. https://doi.org/10.1152/jappl.1993.74.1.245

Marsden, K. R., Haykowsky, M. J., Smirl, J. D., Jones, H., Nelson, M. D., Altamirano-Diaz, L. A., … Willie, C. K. (2012). Aging blunts hyperventilation-induced hypocapnia and reduction in cerebral blood flow velocity during maximal exercise. Age, 34(3), 725–735. https://doi.org/10.1007/s11357-011-9258-9

Nelson, M. D., Haykowsky, M. J., Stickland, M. K., Altamirano-Diaz, L. A., Willie, C. K., Smith, K. J., … Ainslie, P. N. (2011). Reductions in cerebral blood flow during passive heat stress in humans: partitioning the mechanisms. J Physiol, 589(16), 4053–4064. https://doi.org/10.1113/jphysiol.2011.212118

Nielsen, H. B., Madsen, P., Svendsen, L. B., Roach, R. C., & Secher, N. H. (1998). The influence of PaO2, pH and SaO2 on maximal oxygen uptake. Acta Physiol Scand, 164(1), 89–87. https://doi.org/10.1046/j.1365-201X.1998.00405.x

Nybo, L., Møller, K., Volianitis, S., Nielsen, B., & Secher, N. H. (2002). Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol, 93(1), 58–64. https://doi.org/10.1152/japplphysiol.00049.2002

Nybo, L., & Nielsen, B. (2001a). Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol, 91(3), 1055–1060. https://doi.org/10.1152/jappl.2001.91.3.1055

Nybo, L., & Nielsen, B. (2001b). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol, 534(1), 279–286. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00279.x

Nybo, L., & Secher, N. H. (2004). Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol, 72(4), 223–261. https://doi.org/10.1016/j.pneurobio.2004.03.005

Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol, 107(5), 1370–1380. https://doi.org/10.1152/japplphysiol.00573.2009

Ogoh, S., Dalsgaard, M. K., Yoshiga, C. C., Dawson, E. A., Keller, D. M., Raven, P. B., & Secher, N. H. (2005). Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol, 288(3), H1461–H1467. https://doi.org/10.1152/ajpheart.00948.2004

Paulson, O. B., Strandgaard, S., & Edvinsson, L. (1990). Cerebral autoregulation. Cerebrovasc Brain Metab Rev, 2(2), 161–192.

Pellerin, L. (2005). How astrocytes feed hungry neurons. Mol Neurobiol, 32(1), 59–72. https://doi.org/10.1385/MN:32:1:059

Poca, M. A., Sahuquillo, J., Monforte, R., & Vilalta, A. (2005). Métodos globales de monitorización de la hemodinámica cerebral en el paciente neurocrítico: fundamentos, controversias y actualizaciones en las técnicas de oximetría yugular. Neurocirugía, 16(4), 301–322. https://doi.org/10.4321/S1130-14732005000400002

Querido, J. S., & Sheel, A. W. (2007). Regulation of cerebral blood flow during exercise. Sports Med, 37(9), 765–782. https://doi.org/10.2165/00007256-200737090-00002

Quistorff, B., Secher, N. H., & Lieshout, J. J. V. (2008). Lactate fuels the human brain during exercise. FASEB J, 22(10), 3443–3449. https://doi.org/10.1096/fj.08-106104

Sato, K., & Sadamoto, T. (2010). Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women. J Appl Physiol, 109(3), 864–869. https://doi.org/10.1152/japplphysiol.01359.2009

Scheinberg, P., Blackburn, L. I., Rich, M., & Saslaw, M. (1954). Effects of vigorous physical exercise on cerebral circulation and metabolism. Am J Med, 16(4), 549–554. https://doi.org/10.1016/0002-9343(54)90371-X

Schurr, A., Miller, J. J., Payne, R. S., & Rigor, B. M. (1999). An Increase in Lactate Output by Brain Tissue Serves to Meet the Energy Needs of Glutamate-Activated Neurons. J Neurosci, 19(1), 34–39.

Secher, N. H., Seifert, T., & Lieshout, J. J. V. (2008). Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol, 104(1), 306–314. https://doi.org/10.1152/japplphysiol.00853.2007

Seifert, T., & Secher, N. H. (2011). Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol, 95(3), 406–426. https://doi.org/10.1016/j.pneurobio.2011.09.008

Smith, D., Pernet, A., Hallett, W. A., Bingham, E., Marsden, P. K., & Amiel, S. A. (2003). Lactate: A Preferred Fuel for Human Brain Metabolism In Vivo. J Cereb Blood Flow Metab, 23(6), 658–664. https://doi.org/10.1097/01.WCB.0000063991.19746.11

Smith, K. J., Wong, L. E., Eves, N. D., Koelwyn, G. J., Smirl, J. D., Willie, C. K., & Ainslie, P. N. (2012). Regional cerebral blood flow distribution during exercise: Influence of oxygen. Respir Physiol Neurobiol, 184(1), 97–105. https://doi.org/10.1016/j.resp.2012.07.014

Veneman, T., Mitrakou, A., Mokan, M., Cryer, P., & Gerich, J. (1994). Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes, 43(11), 1311–1317. https://doi.org/10.2337/diab.43.11.1311

Vissing, J., Andersen, M., & Diemer, N. H. (1996). Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab, 16(4), 729–736. https://doi.org/10.1097/00004647-199607000-00025

Williamson, J. W., McColl, R., Mathews, D., Ginsburg, M., & Mitchell, J. H. (1999). Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol, 87(3), 1213–1219. https://doi.org/10.1152/jappl.1999.87.3.1213

Willie, C. K., Cowan, E. C., Ainslie, P. N., Taylor, C. E., Smith, K. J., Sin, P. Y. W., & Tzeng, Y. C. (2011). Neurovascular coupling and distribution of cerebral blood flow during exercise. J Neurosci Methods, 198(2), 270–273. https://doi.org/10.1016/j.jneumeth.2011.03.017

Willie, C. K., & Smith, K. J. (2011). Fuelling the exercising brain: a regulatory quagmire for lactate metabolism. J Physiol, 589(4), 779–780. https://doi.org/10.1113/jphysiol.2010.204776

Zobl, E. G., Talmers, F. N., Christensen, R. C., & Baer, L. J. (1965). Effect of exercise on the cerebral circulation and metabolism. J Appl Physiol, 20(6), 1289–1293. https://doi.org/10.1152/jappl.1965.20.6.1289




DOI: https://doi.org/10.14198/jhse.2015.101.13