Cycling specific postural stability during incremental exercise: The relationship with cyclists Functional Movement Screen score
DOI:
https://doi.org/10.14198/jhse.2017.121.07Keywords:
Force plate, GRF, Cyclus2, Postural swayAbstract
The purpose of this study was to characterise the changes in the power of the normalised ground reaction forces and COP swaying, as measures of the cycling stability and effectiveness of full body motion during an incremental cycling exercise; and to examine the relationships between cycling specific postural stability and cyclists ability to perform functional movements, measured by the FMS test.38 competitive road cyclists (19.2±2.3 yrs., 181.7±6.6 cm, 74.3±7.3 kg) performed Functional Movement Screen (FMS) test to evaluate their musculoskeletal state. Experimental cycling exercise was performed using the cyclist’s personal racing bikes mounted on the cycling ergometer Cyclus 2, which were fixed on two Kistler 9286B force plate. The 6 ground reaction force (GRF) components (3 linear and 3 angular), COP movement deviation and sway velocity were measured during incremental cycling exercise (step 2 min, increment 25W). Postural stability measures were calculated as power corrected standard deviations of COP and GRF components signals during 30 sec cycling in every incremental step. The paired t-test was used to control differences in postural stability measures between intensity levels and correlation analyses was used to evaluate relationships between postural stability and FMS scores. Results of the study indicate that most integrative cycling specific posture stability measure is COP sway velocity that is also most sensitive predictor of cyclist’s musculoskeletal state, measured by the FMS test. During an incremental cycling exercise the power normalised postural swaying decreased up to the intensity at the level of anaerobic threshold and during the level of the maximal aerobic power the postural stability decreased significantly.
Funding
The research was supported by Estonian Olympic CommitteeDownloads
References
Abt, J. P., Smoliga, J. M., Brick, M. J., Jolly, J. T., Lephart, S. M., & Fu, F. H. (2007). Relationship between cycling mechanics and core stability. Journal of Strength and Conditioning Research, 21(4), 1300–1304. https://doi.org/10.1519/R-21846.1
Asplund, C., & Ross, M. (2010). Core stability and bicycling. Current sports medicine reports, 9(3), 155-160. https://doi.org/10.1249/JSR.0b013e3181de0f91
Bini, R., Hume, P., Croft, J., & Kilding, A. (2013). Pedal force effectiveness in Cycling: a review of constraints and training effects. Journal Of Science And Cycling, 2(1), 11-24. https://doi.org/10.28985/jsc.v2i1.32
Bini, R. R., Hume, P. A., Lanferdini, F. J., & Vaz, M. A. (2014). Effects of body positions on the saddle on pedalling technique for cyclists and triathletes. European journal of sport science, 14(sup1), S413-S420. https://doi.org/10.1080/17461391.2012.708792
Bini, R. R., Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European journal of sport science, 14(1), 44-52. https://doi.org/10.1080/17461391.2012.725105
Broker, J.P. & Gregor, R.J. (1994). Mechanical energy management in cycling: source relations and energy expenditure. Medicine and Science in Sports and Exercise, 26(1), 64–74. https://doi.org/10.1249/00005768-199401000-00012
Burnett, A. F., Cornelius, M. W., Dankaerts, W., & O'Sullivan, P. B. (2004). Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects—a pilot investigation. Manual therapy, 9(4), 211-219. https://doi.org/10.1016/j.math.2004.06.002
Castronovo, A. M., Conforto, S., Schmid, M., Bibbo, D., & D'Alessio, T. (2013). How to assess performance in cycling: the multivariate nature of influencing factors and related indicators. Frontiers in physiology, 4. https://doi.org/10.3389/fphys.2013.00116
Chapman, R. F., Laymon, A. S., & Arnold, T. (2014). Functional movement scores and longitudinal performance outcomes in elite track and field athletes. International Journal of Sports Physiology & Performance, 9(2), 203-2012. https://doi.org/10.1123/ijspp.2012-0329
Cook, G., Burton, L., Hoogenboom, B. J., & Voight, M. (2014a). Functional movement screening: the use of fundamental movements as an assessment of function-part 1. International journal of sports physical therapy, 9(3), 396-409.
Cook, G., Burton, L., Hoogenboom, B. J., & Voight, M. (2014b). Functional movement screening: the use of fundamental movements as an assessment of function-part 2. International journal of sports physical therapy, 9(4), 549-563.
Costes, A., Turpin, N. A., Villeger, D., Moretto, P., & Watier, B. (2015). A reduction of the saddle vertical force triggers the sit–stand transition in cycling. Journal of biomechanics, 48(12), 2998-3003. https://doi.org/10.1016/j.jbiomech.2015.07.035
Coyle, E. F., Feltner, M. E., Kautz, S. A., Hamilton, M. T., Montain, S. J., Baylor, A. M., ... & Petrek, G. W. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine and science in sports and exercise, 23(1), 93-107. https://doi.org/10.1249/00005768-199101000-00015
Coyle, E. F. (2005). Improved muscular efficiency displayed as Tour de France champion matures. Journal of Applied Physiology, 98(6), 2191-2196. https://doi.org/10.1152/japplphysiol.00216.2005
Dannenberg, A. L., Needle, S., Mullady, D., & Kolodner, K. B. (1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American journal of sports medicine,24(6), 747-753. https://doi.org/10.1177/036354659602400608
Duc, S., Bertucci, W., Pernin, J. N., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116-127. https://doi.org/10.1016/j.jelekin.2006.09.007
Ebert, T.R., Martin, D.T., Stephens, B. & Withers, R.T. (2006). Power Output During a Professional Men's Road-Cycling Tour. International Journal of Sports Physiology and Performance, 1(4), 324-335. https://doi.org/10.1123/ijspp.1.4.324
Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: a review. European journal of applied physiology, 106(1), 1-14. https://doi.org/10.1007/s00421-009-1008-7
Fordham, S., Garbutt, G., & Lopes, P. (2004). Epidemiology of injuries in adventure racing athletes. British journal of sports medicine, 38(3), 300-303. https://doi.org/10.1136/bjsm.2002.003350
García-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of sports sciences, 34(17), 1619-1626. https://doi.org/10.1080/02640414.2015.1127987
Gonzalez, H., & Hull, M. L. (1989). Multivariable optimization of cycling biomechanics. Journal of biomechanics, 22(11-12), 1151-1161. https://doi.org/10.1016/0021-9290(89)90217-0
Gnehm, P., Reichenbach, S., Altpeter, E. ,Widmer, H., & Hoppeler, H. (1997). Influence of different racing positions on metabolic cost in elite cyclists. Medicine and science in sports and exercise, 29(6), 818-823. https://doi.org/10.1097/00005768-199706000-00013
Haugen, T., Haugvad, L., Røstad, V., Lockie, R., & Sæterbakken, A. (2016). Effects of Core-Stability Training on Performance and Injuries in Competitive Athletes. Sportscience, 20.
Hopkins, W. G. (2010). Linear models and effect magnitudes for research, clinical and practical applications. Sportscience, 14, 49Á57.
Hotta, T., Nishiguchi, S., Fukutani, N., Tashiro, Y., Adachi, D., Morino, S., ... & Aoyama, T. (2015). Functional Movement Screen for Predicting Running Injuries in 18-to 24-Year-Old Competitive Male Runners. The Journal of Strength & Conditioning Research, 29(10), 2808-2815. https://doi.org/10.1519/JSC.0000000000000962
Jeukendrup, A. E., Craig, N. P., & Hawley, J. A. (2000). The bioenergetics of world class cycling. Journal Of Science & Medicine In Sport, 3(4), 414-433. https://doi.org/10.1016/S1440-2440(00)80008-0
Kiesel, K., Plisky, P. J., & Voight, M. L. (2007). Can serious injury in professional football be predicted by a preseason functional movement screen. N Am J Sports Phys Ther, 2(3), 147-158.
Kraus, K., Schütz, E., Taylor, W. R., & Doyscher, R. (2014). Efficacy of the functional movement screen: a review. The Journal of Strength & Conditioning Research, 28(12), 3571-3584. https://doi.org/10.1519/JSC.0000000000000556
Lucia, A., Pardo, J., Durantez, A., Hoyos, J., & Chicharro, J. L. (1998). Physiological differences between professional and elite road cyclists. International journal of sports medicine, 19(05), 342-348. https://doi.org/10.1055/s-2007-971928
Lucía, A., Hoyos, J., & Chicharro, J. L. (2001). Physiology of professional road cycling. Sports Medicine, 31(5), 325-337. https://doi.org/10.2165/00007256-200131050-00004
Masani, K., Vette, A. H., Abe, M. O., & Nakazawa, K. (2014). Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait & posture, 39(3), 946-952. https://doi.org/10.1016/j.gaitpost.2013.12.008
McDaniel, J., Subudhi, A., & Martin, J. C. (2005). Torso stabilization reduces the metabolic cost of producing cycling power. Canadian journal of applied physiology, 30(4), 433-441. https://doi.org/10.1139/h05-132
Menard, M., Domalain, M., Decatoire, A., & Lacouture, P. (2016). Influence of saddle setback on pedalling technique effectiveness in cycling. Sports Biomechanics, 15(4), 462-472. https://doi.org/10.1080/14763141.2016.1176244
Millet, G. P., Tronche, C., Fuster, N., & Candau, R. (2002). Level ground and uphill cycling efficiency in seated and standing positions. Medicine and Science in Sports and Exercise, 34(10), 1645-1652. https://doi.org/10.1097/00005768-200210000-00017
Miller, A., Heath, E., Bressel, E., & Smith, G. (2013). The metabolic cost of balance in Cycling. Journal Of Science And Cycling, 2(2), 20-26. https://doi.org/10.28985/jsc.v2i2.43
Minick, K. I., Kiesel, K. B., Burton, L., Taylor, A., Plisky, P., & Butler, R. J. (2010). Interrater reliability of the functional movement screen. The Journal of Strength & Conditioning Research, 24(2), 479-486. https://doi.org/10.1519/JSC.0b013e3181c09c04
Neptune, R. R., & Herzog, W. (1999). The association between negative muscle work and pedaling rate. Journal of biomechanics, 32(10), 1021-1026. https://doi.org/10.1016/S0021-9290(99)00100-1
Okada, T., Huxel, K. C., & Nesser, T. W. (2011). Relationship between core stability, functional movement, and performance. The Journal of Strength & Conditioning Research, 25(1), 252-261. https://doi.org/10.1519/JSC.0b013e3181b22b3e
Passfield, L., & Doust, J. H. (2000). Changes in cycling efficiency and performance after endurance exercise. Medicine and Science in Sports and Exercise, 32(11), 1935-1941. https://doi.org/10.1097/00005768-200011000-00018
Patterson, R. P., & Moreno, M. I. (1990). Bicycle pedalling forces as a function of pedalling rate and power output. Medicine and science in sports and exercise, 22(4), 512-516. https://doi.org/10.1249/00005768-199008000-00016
Peveler, W. W., & Green, J. M. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. The Journal of Strength & Conditioning Research, 25(3), 629-633. https://doi.org/10.1519/JSC.0b013e3181d09e60
Teyhen, D. S., Shaffer, S. W., Lorenson, C. L., Halfpap, J. P., Donofry, D. F., Walker, M. J., ... & Childs, J. D. (2012). The functional movement screen: A reliability study. journal of orthopaedic & sports physical therapy, 42(6), 530-540. https://doi.org/10.2519/jospt.2012.3838
Weiss, B. D. (1985). Nontraumatic injuries in amateur long distance bicyclists. The American journal of sports medicine, 13(3), 187-192. https://doi.org/10.1177/036354658501300308
Weston, S. B., & Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. Journal of Science and Medicine in Sport, 4(3), 357-366. https://doi.org/10.1016/S1440-2440(01)80044-X
Wiest, M. J., Diefenthaeler, F., Mota, C. B., & Carpes, F. P. (2011). Changes in postural stability following strenuous running and cycling. Journal of Physical Education and Sport, 11(4), 406.
Wilber, C. A., Holland, G. J., Madison, R. E., & Loy, S. F. (1995). An epidemiological analysis of overuse injuries among recreational cyclists. International journal of sports medicine, 16(3), 201-206. https://doi.org/10.1055/s-2007-972992
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.