Neuromuscular and metabolic responses of the pre-exhaustion method in highly-trained individuals
DOI:
https://doi.org/10.14198/jhse.2019.141.09Keywords:
Resistance training, Electromyography, Methods of training, Lactate, ActivationAbstract
Several studies investigated the pre-exhaustion resistance training (PERT), no study investigated the responses after the pre-fatigue of two auxiliary muscles. The purpose of this study was to evaluate the neuromuscular and metabolic effects of PERT in highly-trained individuals. Twenty-one men (24.90 ± 4.54 years) who were experienced in resistance training were randomly distributed into two groups. In the conventional resistance training (CRT), three sets of each exercise were performed separately (front raise [FR], triceps-forehead [TF] extensions, and bench press [BP]), with an interval of 45 seconds between the sets. In the PERT method, the exercises were performed in sequence (FR, TF, and BP), with an interval of 2 minutes 15 seconds between the sets. The electromyography (EMG), signal was acquired during the execution of the FR, TF, and BP exercises, and the muscles anterior deltoid, triceps brachii long head, and pectoralis major (clavicular head and sternal head). Lactate levels were measured before workout and at the end of each set in each method. There was no difference in the EMG activation of PMC and PMS muscles when compared to the PERT and CRT methods. Clavicular portion, PERT/CRT: 1st 42.1±7.1/42.1±6.6µV, 2st 45.9±5.5/43.5±6.2 µV, 3rd 45.5±5.7/43.9±6.1µV. Sternal portion, PERT/CRT: 1st 36.2±9/35±5.7µV, 2st 38.3±8.9/35.3±6µV, 3rd 36.8±7.1/35.1±5.1µV. However, lactate accumulation was significantly higher in PERT when compared CRT. PERT/CRT 1st 7.6.0±1.8/5.7±1.5 mmol.l-1; 2st: 9.5±1.5/8.4±2 mmol.l-1; 3rd:10.0±2.1/9.4±1.8 mmol.l-1, when compared to CRT. The PERT was more effective, producing greater metabolic stress, demonstrating to be a high-intensity method that leads to muscle adaptation.
Downloads
References
ACSM. (2009). Progression models in resistance training for healthy adults. Med Sci Sports Exerc., 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
Angleri, V., Ugrinowitsch, C., & Libardi, C. A. (2017). Crescent pyramid and drop-set systems do not promote greater strength gains, muscle hypertrophy, and changes on muscle architecture compared with traditional resistance training in well-trained men. Eur J Appl Physiol., 117(2), 359-369. https://doi.org/10.1007/s00421-016-3529-1
Arazi, H., Rahmati, S., Pashazadeh, F., & Rezaei, H. (2015). Comparative effect of order based resistance exercises on number of repetitions, rating of perceived exertion and muscle damage biomarkers in men. Rev Andaluza Med Deporte, 8(4), 139-144. https://doi.org/10.1016/j.ramd.2015.02.002
Artur, G., Adam, M., Przemyslaw, P., Stastny, P., James, T., & Adam, Z. (2017). Effects of pre-exhaustion on the patterns of muscular activity in the flat bench press. J Strength Cond Res., 31(7), 1919-1924. https://doi.org/10.1519/JSC.0000000000001755
Augustsson, J., Thomeé, R., Per, H., Perlindblom, J., Karlsson, J., & Grimby, G. (2003). Effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. J Strength Cond Res., 17(2), 411-416.
Bishop, D. (2001). Evaluation of the Accusport® lactate analyser. Int J Sports Med., 22(07), 525-530. https://doi.org/10.1055/s-2001-17611
Brennecke, A., Guimarães, T. M., Leone, R., Cadarci, M., Mochizuki, L., Simão, R., . . . Serrão, J. C. (2009). Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res., 23(7), 1933-1940. https://doi.org/10.1519/JSC.0b013e3181b73b8f
Brown, L. E., & Weir, J. P. (2001). Asep procedures recomendation i: Accurate assessment of muscular strength and power. J Exerc Physiol Online, 4(11), 1-21.
Campos, Y. A., Guimarães, M. P., de Souza, H. L., da Silva, G. P., Domingos, P. R., Resende, N. M., . . . Vianna, J. M. (2017). Relationship between the Anaerobic Threshold Identified Through Blood Lactate between the Discontinuous and Resisted Dynamic Exercises in Long Distance Runners. J Exerc Physiol Online, 20(1), 83-91.
Chatel, B., Bret, C., Edouard, P., Oullion, R., Freund, H., & Messonnier, L. A. (2016). Lactate recovery kinetics in response to high-intensity exercises. Eur J Appl Physiol., 116(8), 1455-1465. https://doi.org/10.1007/s00421-016-3420-0
Da Silva, G. P., Campos, Y. A. C., Guimarães, M. P., Calil, A., & da Silva, S. F. (2014). Estudo eletromiográfico do exercício supino executado em diferentes ângulos. Rev And Med Deporte, 7(2), 78-82.
De Souza, J. A., Paz, G. A., & Miranda, H. (2017). Blood lactate concentration and strength performance between agonist-antagonist paired set, superset and traditional set training. Arch Med Deporte, 34(3), 145-150.
Ferreira, D. V., Ferreira-Júnior, J. B., Soares, S. R., Cadore, E. L., Izquierdo, M., Brown, L. E., & Bottaro, M. (2017). Chest press exercises with different stability requirements result in similar muscle damage recovery in resistance-trained men. J Strength Cond Res., 31(1), 71-79. https://doi.org/10.1519/JSC.0000000000001453
Fisher, J., Carlson, L., Steele, J., & Smith, D. (2014). The effects of pre-exhaustion, exercise order, and rest intervals in a full-body resistance training intervention. Appl Physiol Nutr Metab., 39(11), 1265-1270. https://doi.org/10.1139/apnm-2014-0162
Gentil, P., Oliveira, E., Júnior, V., Do Carmo, J., & Bottaro, M. (2007). Effects of exercise order on upper-body muscle activation and exercise performance. J Strength Cond Res., 21(4), 1082-1086.
Guarascio, M. J., Penn, C., & Sparks, C. (2016). Effects of Pre-Exhaustion of a Secundary Synergist on a Primary Mover in a Compound Exercise. J Exerc Sports Orthop, 3(1), 1-4. https://doi.org/10.15226/2374-6904/3/1/00141
Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(03), 497-504. https://doi.org/10.1079/BJN19780152
Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., . . . Wang, R. (2015). The effect of training volume and intensity on improvements in muscular strength and size in resistance‐trained men. Physiol Rep, 3(8), e12472. https://doi.org/10.14814/phy2.12472
Merletti, R., & Di Torino, P. (1999). Standards for reporting EMG data. Journal of Electromyography and Kinesiology, 9(1), 3-4.
Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci 17(9), 1450. https://doi.org/10.3390/ijms17091450
Rauch, J. T., Ugrinowitsch, C., Barakat, C. I., Alvarez, M. R., Brummert, D. L., Aube, D. W., . . . De Souza, E. O. (2017). Auto-regulated exercise selection training regimen produces small increases in lean body mass and maximal strength adaptations in strength-trained individuals. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002272
Schoenfeld, B. J., Pope, Z. K., Benik, F. M., Hester, G. M., Sellers, J., Nooner, J. L., . . . Ross, C. L. (2016). Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res., 30(7), 1805-1812. https://doi.org/10.1519/JSC.0000000000001272
Schoenfeld, B. J., Ratamess, N. A., Peterson, M. D., Contreras, B., & Tiryaki-Sonmez, G. (2015). Influence of resistance training frequency on muscular adaptations in well-trained men. J Strength Cond Res., 29(7), 1821-1829. https://doi.org/10.1519/JSC.0000000000000970
Sforzo, G. A., & Touey, P. R. (1996). Manipulating Exercise Order Affects Muscular Performance During a Resistance Exercise Training Session. J Strength Cond Res., 10(1), 20-24.
Simao, R., de Salles, B. F., Figueiredo, T., Dias, I., & Willardson, J. M. (2012). Exercise order in resistance training. Sports Medicine, 42(3), 251-265. https://doi.org/10.2165/11597240-000000000-00000
Simão, R., Farinatti, P. d. T. V., Polito, M. D., Maior, A. S., & Fleck, S. J. (2005). Influence of exercise order on the number of repetitions performed and perceived exertion during resistance exercises. J Strength Cond Res., 19(1), 152-156.
Soares, E. G., Brown, L. E., Gomes, W. A., Corrêa, D. A., Serpa, É. P., da Silva, J. J., . . . Lopes, C. R. (2016). Comparison between Pre-Exhaustion and Traditional Exercise Order on Muscle Activation and Performance in Trained Men. J Sports Sci Med, 15(1), 111-117.
Spineti, J., De Salles, B. F., Rhea, M. R., Lavigne, D., Matta, T., Miranda, F., . . . Simão, R. (2010). Influence of exercise order on maximum strength and muscle volume in nonlinear periodized resistance training. J Strength Cond Res., 24(11), 2962-2969. https://doi.org/10.1519/JSC.0b013e3181e2e19b
Tan, B. (1999). Manipulating Resistance Training Program Variables to Optimize Maximum Strength in Men: A Review. J Strength Cond Res., 13(3), 289-304. https://doi.org/10.1519/00124278-199908000-00019
Wirtz, N., Wahl, P., Kleinöder, H., & Mester, J. (2014). Lactate kinetics during multiple set resistance exercise. J Sports Sci Med, 13(1), 73-77.
Downloads
Statistics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Human Sport and Exercise

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by JHSE. Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).
You are free to share, copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Transfer of Copyright
In consideration of JHSE’s publication of the Work, the authors hereby transfer, assign, and otherwise convey all copyright ownership worldwide, in all languages, and in all forms of media now or hereafter known, including electronic media such as CD-ROM, Internet, and Intranet, to JHSE. If JHSE should decide for any reason not to publish an author’s submission to the Work, JHSE shall give prompt notice of its decision to the corresponding author, this agreement shall terminate, and neither the author nor JHSE shall be under any further liability or obligation.
Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article, except as disclosed on a separate attachment. All funding sources supporting the Work and all institutional or corporate affiliations of the authors are acknowledged in a footnote in the Work.
Each author certifies that his or her institution has approved the protocol for any investigation involving humans or animals and that all experimentation was conducted in conformity with ethical and humane principles of research.
Competing Interests
Biomedical journals typically require authors and reviewers to declare if they have any competing interests with regard to their research.
JHSE require authors to agree to Copyright Notice as part of the submission process.