Comparison of two methods in the estimation of vertical jump height

Authors

  • Madison Grainger University of Calgary, Canada
  • Alanna Weisberg University of Calgary, Canada
  • Pro Stergiou University of Calgary, Canada
  • Larry Katz University of Calgary, Canada

DOI:

https://doi.org/10.14198/jhse.2020.153.12

Keywords:

Inertial measurement unit, Accelerometers, Accuracy, Sports

Abstract

Vertical jumps are vital aspects in many sports. Many technologies are available to determine and calculate jump height. One such portable and easy-to-use technology is an Inertial Measurement Unit (IMU) that uses accelerometers, gyroscopes, and magnetometers. The purpose of this study was to compare vertical jump heights calculated from the data captured with an IMU versus true jump height calculated using a gold standard 3-Dimensional Motion Capture system. Ten subjects completed five jumps for six different conditions including vertical counter-movement jumps and jumps involving rotations on the ground and using a trampoline. An average Pearson correlation coefficient of .87 was found between the IMU and motion capture for all conditions. Condition correlations ranged from .76 to .94. Bland-Altman analyses showed that the IMU underestimated the vertical jump height compared to the motion capture by 5.0 to 9.2 cm across all conditions. Results suggest an IMU can be used to measure jump height in a laboratory setting with a reasonable accuracy, even during vertical jumps that include rotations.

Downloads

Download data is not yet available.

References

Balsalobre-Fernández, C., Glaister, M., & Lockey, R. A. (2015). The validity and reliability of an iphone app for measuring vertical jump performance. Journal of Sports Sciences, 33(15), 1574-1579. https://doi.org/10.1080/02640414.2014.996184

Bernardina, G. R. D., Monnet, T., Pinto, H. T., Barros, R. M. L. d., Cerveri, P., & Silvatti, A. P. (2019). Are action sport cameras accurate enough for 3d motion analysis? A comparison with a commercial motion capture system. Journal of Applied Biomechanics, 35(1), 80-86. https://doi.org/10.1123/jab.2017-0101

Bosco, C., Luhtanen, P., & Komi, P. V. (1983). A simple method for measurement of mechanical power in jumping. European Journal of Applied Physiology and Occupational Physiology, 50(2), 273-282. https://doi.org/10.1007/bf00422166

Bui, H. T., Farinas, M.-I., Fortin, A.-M., Comtois, A.-S., & Leone, M. (2015). Comparison and analysis of three different methods to evaluate vertical jump height. Clinical Physiology and Functional Imaging, 35(3), 203-209. https://doi.org/10.1111/cpf.12148

Choukou, M. A., Laffaye, G., & Taiar, R. (2014). Reliability and validity of an accele-rometric system for assessing vertical jumping performance. Biology of sport, 31(1), 55-62. https://doi.org/10.5604/20831862.1086733

Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., . . . Finlay, D. (2013). Optimal placement of accelerometers for the detection of everyday activities. Sensors (Basel, Switzerland), 13(7), 9183-9200. https://doi.org/10.3390/s130709183

Dias, J. A., Pupo, J. D., Reis, D. C., Borges, L., Santos, S. G., Moro, A. R., & Borges, N. G. J. (2011). Validity of two methods for estimation of vertical jump height. The Journal of Strength & Conditioning Research, 25(7), 2034-2039. https://doi.org/10.1519/jsc.0b013e3181e73f6e

Harding, J., Small, J. W., & James, D. A. (2007). Feature extraction of performance variables in elite half-pipe snowboarding using body mounted inertial sensors. Paper presented at the BioMEMS and Nanotechnology III. https://doi.org/10.1117/12.759259

Jarning, J. M., Mok, K.-M., Hansen, B. H., & Bahr, R. (2015). Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sports Biomechanics, 14(1), 95-105. https://doi.org/10.1080/14763141.2015.1027950

Leard, J. S., Cirillo, M. A., Katsnelson, E., Kimiatek, D. A., Miller, T. W., Trebincevic, K., & Garbalosa, J. C. (2007). Validity of two alternative systems for measuring vertical jump height. The Journal of Strength & Conditioning Research, 21(4), 1296-1299. https://doi.org/10.1519/00124278-200711000-00055

Lee, Y.-S., Ho, C.-S., Shih, Y., Chang, S.-Y., Róbert, F. J., & Shiang, T.-Y. (2015). Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait & Posture, 41(4), 877-881. https://doi.org/10.1016/j.gaitpost.2015.03.007

Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69(11), 1198-1204. https://doi.org/10.1119/1.1397460

Magnúsdóttir, Á., orgilsson, B., & Karlsson, B. (2014). Comparing three devices for jump height measurement in a heterogeneous group of subjects. The Journal of Strength & Conditioning Research, 28(10), 2837-2844. https://doi.org/10.1519/jsc.0000000000000464

Mauch, M., Rist, H. J., & Kaelin, X. (2014). Reliability and validity of two measurement systems in the quantification of jump performance (Vol. 62).

McMahon, J. J., Jones, P. A., & Comfort, P. (2016). A correction equation for jump height measured using the just jump system. International Journal of Sports Physiology and Performance, 11(4), 555-557. https://doi.org/10.1123/ijspp.2015-0194

Monnet, T., Decatoire, A., & Lacouture, P. (2014). Comparison of algorithms to determine jump height and flight time from body mounted accelerometers. Sports Engineering, 17(4), 249-259. https://doi.org/10.1007/s12283-014-0155-1

Nuzzo, J. L., Anning, J. H., & Scharfenberg, J. M. (2011). The reliability of three devices used for measuring vertical jump height. The Journal of Strength & Conditioning Research, 25(9), 2580-2590. https://doi.org/10.1519/jsc.0b013e3181fee650

Ozkaya, G., Jung, H. R., Jeong, I. S., Choi, M. R., Shin, M. Y., Lin, X., . . . Lee, K.-K. (2018). Three-dimensional motion capture data during repetitive overarm throwing practice. Scientific Data, 5, 180272. https://doi.org/10.1038/sdata.2018.272

Picerno, P., Camomilla, V., & Capranica, L. (2011). Countermovement jump performance assessment using a wearable 3d inertial measurement unit. Journal of Sports Sciences, 29(2), 139-146. https://doi.org/10.1080/02640414.2010.523089

Post, A., Koncan, D., Kendall, M., Cournoyer, J., Michio Clark, J., Kosziwka, G., . . . Blaine Hoshizaki, T. (2018). Analysis of speed accuracy using video analysis software. Sports Engineering, 21(3), 235-241. https://doi.org/10.1007/s12283-018-0263-4

Rantalainen, T., Gastin, P. B., Spangler, R., & Wundersitz, D. (2018). Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation. Journal of Sports Sciences, 36(17), 1937-1942. https://doi.org/10.1080/02640414.2018.1426974

Requena, B., García, I., Requena, F., Saez-Saez de Villarreal, E., & Pääsuke, M. (2012). Reliability and validity of a wireless microelectromechanicals based system (keimove™) for measuring vertical jumping performance. Journal of sports science & medicine, 11(1), 115-122.

Sadi, F., Klukas, R., & Hoskinson, R. (2013). Precise air time determination of athletic jumps with low-cost mems inertial sensors using multiple attribute decision making (Vol. 6). https://doi.org/10.1080/19346182.2013.817058

Yingling, V. R., Castro, D. A., Duong, J. T., Malpartida, F. J., Usher, J. R., & O, J. (2018). The reliability of vertical jump tests between the vertec and my jump phone application. PeerJ, 6, e4669. https://doi.org/10.7717/peerj.4669

Statistics

Statistics RUA

Published

2020-09-01

How to Cite

Grainger, M., Weisberg, A., Stergiou, P., & Katz, L. (2020). Comparison of two methods in the estimation of vertical jump height. Journal of Human Sport and Exercise, 15(3), 623–632. https://doi.org/10.14198/jhse.2020.153.12

Issue

Section

Performance Analysis of Sport