Journal of Human Sport and Exercise

Trampoline performance under changing visual conditions

Thomas Heinen, Frederike Veit

Abstract

Picking up and utilizing visual information is thought to be of high importance in the control of trampoline skills. Yet, the question arises how information from the different vision systems contributes to trampoline gymnastics performance. The aim of this study was to examine the role of binocular and monocular visual information in trampoline gymnastics. N = 12 gymnasts performed straight leaps on the trampoline under full vision, monocular vision, and under occluded vision. Gymnasts’ preferred flight duration as well as gymnasts’ variable error in feet placement on the trampoline bed were analysed by means of an optic movement analysis system. Results revealed that gymnasts exhibited longer flight duration in the binocular vision condition and the monocular vision condition, as compared to the occluded vision condition. Gymnasts furthermore exhibited a larger variable error in feet placement with less visual information available. It is argued that gymnasts benefit from the availability of binocular information in order to perform precise leaps on the trampoline. Nevertheless, it is argued that utilizing visual cues in trampoline gymnastics is likely to depend on the current configuration of task-constraints (i.e., performing straight leaps vs. somersaults with and without twists).


Keywords

Monocular vision; Binocular vision; Occluded vision; Flight duration; Variable error

References

Bardy, B.G., & Laurent, M. (1998). How is body orientation controlled during somersaulting? J Exp Psychol Human, 24(3), 963-977. https://doi.org/10.1037//0096-1523.24.3.963

Bulson, R., Ciuffreda, K.J., & Ludlam, D.P. (2009). Effect of binocular vs. monocular viewing on golf putting accuracy. J Behav Optom, 20(2), 31-34.

Caljouw, S.R., van der Kamp, J., & Savelsbergh, G.J.P. (2004). Catching optical information for the regulation of timing. Exp Brain Res, 155, 427-438. https://doi.org/10.1007/s00221-003-1739-3

Coull, J., Weir, P.L., Tremblay, L., Weeks, D.J., & Elliott, D. (2000). Monocular and binocular vision in the control of goal-directed movement. J Mot Behav, 32(4), 347-360. https://doi.org/10.1080/00222890009601385

Davlin, C.D., Sands, W.A., & Shultz, B.B. (2001a). The role of vision in control of orientation in a back tuck somersault. Motor Control, 5, 337-346. https://doi.org/10.1123/mcj.5.4.337

Davlin, C.D., Sands, W.A., & Shultz, B.B. (2001b). Peripheral vision and back tuck somersaults. Percept Motor Skill, 93, 465-471. https://doi.org/10.2466/pms.2001.93.2.465

Enoka, R.M. (2002). Neuromechanics of human movement (3rd ed.). Champaign, IL: Human Kinetics.

Eysenck, M.W., & Keane, M.T. (2015). Cognitive psychology. A student’s handbook (7th ed.). New York, NY: Psychology Press.

Fédération Interationale de Gymnastique (FIG). (2017). 2017-2020 code of points. Trampoline gymnastics. Available from http://www.fig-gymnastics.com/publicdir/rules/files/tra/TRA-CoP_2017-2020-e.pdf [cited 30 January 2019].

Gray, R., & Regan, D. (1998). Accuracy of estimating time to collision using binocular and monocular information. Vision Res, 38(4), 499-512. https://doi.org/10.1016/s0042-6989(97)00230-7

Gray, R., & Regan, D. (2004). The use of binocular time-to-contact information. In H. Hecht & G.J.P. Savelsbergh (Eds.). Advances in Psychology: Vol. 135. Time-to-contact. (pp. 303-325). Amsterdam: Elsevier B.V. https://doi.org/10.1016/s0166-4115(04)80015-3

Hay, J.G. (1993). The biomechanics of sports techniques (4th ed). Englewood Cliffs, NJ: Prentice-Hall.

Hayhoe, M., Gillam, B., Chajka, K., & Vecellio, E. (2009). The role of binocular vision in walking. Visual Neurosci, 26(1), 73-80. https://doi.org/10.1017/s0952523808080838

Heinen, T., Koschnick, J., Schmidt-Maaß, D., & Vinken, P.M. (2014). Gymnasts utilize visual and auditory information for behavioural synchronization in trampolining. Biol Sport, 31, 223-226. https://doi.org/10.5604/20831862.1111850

Hondzinski, J.M., & Darling, W.G. (2001). Aerial somersault performance under three visual conditions. Motor Control, 5, 281-300. https://doi.org/10.1123/mcj.5.3.281

Horne, D.E. (1978). Trampolining. A complete handbook. London, UK: Faber and Faber Limited.

Isotalo, E., Kapoula, Z., Feret, P.H., Gauchon, K., Zamfirescu, F., & Gagey, P.M. (2004). Monocular versus binocular vision in postural control. Auris Nasus Larynx, 31(1), 11-17. https://doi.org/10.1016/j.anl.2003.10.001

Kelly, J. (2014). Over & above. Trampoline gymnastics. Towards world class performance. Oxford: Meyer & Meyer Sports.

Latash, M.L. (1993). Control of human movement. Champaign, IL: Human Kinetics.

Lee, D.N., Young, D.S., & Rewt, D. (1992). How do somersaulters land on their feet? J Exp Psychol Human,18(4), 1195-1202. https://doi.org/10.1037//0096-1523.18.4.1195

Luis, M., & Tremblay, L. (2008). Visual feedback use during a back tuck somersault: evidence for optimal visual feedback utilization. Motor Control, 12, 210-218. https://doi.org/10.1123/mcj.12.3.210

Magill, R.A. (2011). Motor learning and control. Concepts and applications (9th ed.). New York, NY: McGraw-Hill.

Mazyn, L.I., Lenoir, M., Montagne, G., & Savelsbergh, G.J.P. (2004). The contribution of stereo vision to one-handed catching. Exp Brain Res, 157(3), 383-390. https://doi.org/10.1007/s00221-004-1926-x

Mikromak (2008). WINanalyze 3D (ver. 2.1.1). Berlin, Germany.

Olivier, I., Weeks, D.J., Lyons, J., Ricker, K.L., & Elliott, D. (1998). Monocular and binocular vision in one-hand ball catching: interocular integration. J Mot Behav, 30(4), 343-351. https://doi.org/10.1080/00222899809601348

Patla , A.E., Niechwiej, E., Racco, V., & Goodale, M.A. (2002). Understanding the contribution of binocular vision to the control of adaptive locomotion. Exp Brain Res, 142(4), 551-561. https://doi.org/10.1007/s00221-001-0948-x

Raab, M., de Oliveira, R.F., & Heinen, T. (2009). How do people perceive and generate options? In M. Raab, J.G. Johnson & H. Heekeren (Eds.), Progress in brain research: vol. 174. Mind and motion: the bidirectional link between thought and action (pp. 49-59). Amsterdam: Elsevier B.V. https://doi.org/10.1016/s0079-6123(09)01305-3

Rézette, D., & Amblard, B. (1985). Orientation versus motion visual cues to control sensorimotor skills in some acrobatic leaps. Hum Movement Sci, 4, 297-306. https://doi.org/10.1016/0167-9457(85)90016-8

Sands, W.A. (1991). Spatial orientation while somersaulting. Technique, 11, 16-19.

Savelsbergh, G.J.P., & Whiting, H.T.A. (1992). The acquisition of catching under monocular and binocular conditions. J Mot Behav, 24(4), 320-328. https://doi.org/10.1080/00222895.1992.9941628

Vickers, J.N. (2007). Perception, cognition and decision training: the quiet eye in action. Champaign, IL: Human Kinetics.

Warren, W.H. (2006). The dynamics of perception and action. Psychol Rev, 113(2), 358-389.




DOI: https://doi.org/10.14198/jhse.2020.153.14





Copyright (c) 2018 Journal of Human Sport and Exercise

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.