Trampoline performance under changing visual conditions




Monocular vision, Binocular vision, Occluded vision, Flight duration, Variable error


Picking up and utilizing visual information is thought to be of high importance in the control of trampoline skills. Yet, the question arises how information from the different vision systems contributes to trampoline gymnastics performance. The aim of this study was to examine the role of binocular and monocular visual information in trampoline gymnastics. N = 12 gymnasts performed straight leaps on the trampoline under full vision, monocular vision, and under occluded vision. Gymnasts’ preferred flight duration as well as gymnasts’ variable error in feet placement on the trampoline bed were analysed by means of an optic movement analysis system. Results revealed that gymnasts exhibited longer flight duration in the binocular vision condition and the monocular vision condition, as compared to the occluded vision condition. Gymnasts furthermore exhibited a larger variable error in feet placement with less visual information available. It is argued that gymnasts benefit from the availability of binocular information in order to perform precise leaps on the trampoline. Nevertheless, it is argued that utilizing visual cues in trampoline gymnastics is likely to depend on the current configuration of task-constraints (i.e., performing straight leaps vs. somersaults with and without twists).


Download data is not yet available.


Bardy, B.G., & Laurent, M. (1998). How is body orientation controlled during somersaulting? J Exp Psychol Human, 24(3), 963-977.

Bulson, R., Ciuffreda, K.J., & Ludlam, D.P. (2009). Effect of binocular vs. monocular viewing on golf putting accuracy. J Behav Optom, 20(2), 31-34.

Caljouw, S.R., van der Kamp, J., & Savelsbergh, G.J.P. (2004). Catching optical information for the regulation of timing. Exp Brain Res, 155, 427-438.

Coull, J., Weir, P.L., Tremblay, L., Weeks, D.J., & Elliott, D. (2000). Monocular and binocular vision in the control of goal-directed movement. J Mot Behav, 32(4), 347-360.

Davlin, C.D., Sands, W.A., & Shultz, B.B. (2001a). The role of vision in control of orientation in a back tuck somersault. Motor Control, 5, 337-346.

Davlin, C.D., Sands, W.A., & Shultz, B.B. (2001b). Peripheral vision and back tuck somersaults. Percept Motor Skill, 93, 465-471.

Enoka, R.M. (2002). Neuromechanics of human movement (3rd ed.). Champaign, IL: Human Kinetics.

Eysenck, M.W., & Keane, M.T. (2015). Cognitive psychology. A student’s handbook (7th ed.). New York, NY: Psychology Press.

Fédération Interationale de Gymnastique (FIG). (2017). 2017-2020 code of points. Trampoline gymnastics. Available from [cited 30 January 2019].

Gray, R., & Regan, D. (1998). Accuracy of estimating time to collision using binocular and monocular information. Vision Res, 38(4), 499-512.

Gray, R., & Regan, D. (2004). The use of binocular time-to-contact information. In H. Hecht & G.J.P. Savelsbergh (Eds.). Advances in Psychology: Vol. 135. Time-to-contact. (pp. 303-325). Amsterdam: Elsevier B.V.

Hay, J.G. (1993). The biomechanics of sports techniques (4th ed). Englewood Cliffs, NJ: Prentice-Hall.

Hayhoe, M., Gillam, B., Chajka, K., & Vecellio, E. (2009). The role of binocular vision in walking. Visual Neurosci, 26(1), 73-80.

Heinen, T., Koschnick, J., Schmidt-Maaß, D., & Vinken, P.M. (2014). Gymnasts utilize visual and auditory information for behavioural synchronization in trampolining. Biol Sport, 31, 223-226.

Hondzinski, J.M., & Darling, W.G. (2001). Aerial somersault performance under three visual conditions. Motor Control, 5, 281-300.

Horne, D.E. (1978). Trampolining. A complete handbook. London, UK: Faber and Faber Limited.

Isotalo, E., Kapoula, Z., Feret, P.H., Gauchon, K., Zamfirescu, F., & Gagey, P.M. (2004). Monocular versus binocular vision in postural control. Auris Nasus Larynx, 31(1), 11-17.

Kelly, J. (2014). Over & above. Trampoline gymnastics. Towards world class performance. Oxford: Meyer & Meyer Sports.

Latash, M.L. (1993). Control of human movement. Champaign, IL: Human Kinetics.

Lee, D.N., Young, D.S., & Rewt, D. (1992). How do somersaulters land on their feet? J Exp Psychol Human,18(4), 1195-1202.

Luis, M., & Tremblay, L. (2008). Visual feedback use during a back tuck somersault: evidence for optimal visual feedback utilization. Motor Control, 12, 210-218.

Magill, R.A. (2011). Motor learning and control. Concepts and applications (9th ed.). New York, NY: McGraw-Hill.

Mazyn, L.I., Lenoir, M., Montagne, G., & Savelsbergh, G.J.P. (2004). The contribution of stereo vision to one-handed catching. Exp Brain Res, 157(3), 383-390.

Mikromak (2008). WINanalyze 3D (ver. 2.1.1). Berlin, Germany.

Olivier, I., Weeks, D.J., Lyons, J., Ricker, K.L., & Elliott, D. (1998). Monocular and binocular vision in one-hand ball catching: interocular integration. J Mot Behav, 30(4), 343-351.

Patla , A.E., Niechwiej, E., Racco, V., & Goodale, M.A. (2002). Understanding the contribution of binocular vision to the control of adaptive locomotion. Exp Brain Res, 142(4), 551-561.

Raab, M., de Oliveira, R.F., & Heinen, T. (2009). How do people perceive and generate options? In M. Raab, J.G. Johnson & H. Heekeren (Eds.), Progress in brain research: vol. 174. Mind and motion: the bidirectional link between thought and action (pp. 49-59). Amsterdam: Elsevier B.V.

Rézette, D., & Amblard, B. (1985). Orientation versus motion visual cues to control sensorimotor skills in some acrobatic leaps. Hum Movement Sci, 4, 297-306.

Sands, W.A. (1991). Spatial orientation while somersaulting. Technique, 11, 16-19.

Savelsbergh, G.J.P., & Whiting, H.T.A. (1992). The acquisition of catching under monocular and binocular conditions. J Mot Behav, 24(4), 320-328.

Vickers, J.N. (2007). Perception, cognition and decision training: the quiet eye in action. Champaign, IL: Human Kinetics.

Warren, W.H. (2006). The dynamics of perception and action. Psychol Rev, 113(2), 358-389.


Statistics RUA



How to Cite

Heinen, T., & Veit, F. (2020). Trampoline performance under changing visual conditions. Journal of Human Sport and Exercise, 15(3), 643–652.



Performance Analysis of Sport